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The Analysis of Generative Music Programs

NICK COLLINS

Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
E-mail: N.Collins@sussex.ac.uk

Composers have spent more than fifty years devising

computer programs for the semi-automated production of

music. This article shall focus in particular on the case of

minimal run-time human intervention, where a program

allows the creation of a musical variation, typically

unravelling in realtime, on demand. These systems have the

capacity to vary their output with each run, often from no

more input information than the seeding of a random number

generator with the start time. Such artworks are

accumulating, released online as downloads, or exhibited

through streaming radio sites such as rand()%. Listener/users

and composer/designers may wish for deeper insight into these

programs’ ontological status, mechanisms and creative

potential. These works are challenging to dissect; this article

makes a tentative start at confronting the unique problems

and rich behaviours of computer-program-based generative

music, from the social and historical context to the

backwards engineering of programs in relation to their sound

world. After a discussion of exemplars and definitions of

generative art, strategies for analysis are outlined. To provide

practical examples, analyses are provided of two small scale

works by James McCartney.

1. INTRODUCTION

Algorithmic composition is a familiar territory in

computer music, explored since the early mainframe

era of Push Button Bertha (1956) and the Illiac Suite

(1955–59) (Ames 1987), where programs to produce a

few musically relevant symbols would run overnight.

Taking the example of Gottfried Michael Koenig,

Project I (1964) would output a list of discrete note

and instrumentation instructions, derived from prob-

abilistic serialist procedures, which had to be hand-

transcribed into a musical score for performance

(Koenig 1989; Laske 1989). With the backdrop of such

labour-intensive work and the technological benefits of

the oft-quoted Moore’s Law, it is not surprising that

most contemporary explorations favour realtime sys-

tems for speed of feedback, a development that also

supports complex interactive possibilities (Chadabe

1997; Rowe 1993). Yet systems have also been

deliberately devised for the limiting case of minimal

intervention in performance. In the asymptote, a human

designer makes all decisions pertaining to the potential

of the musical device in advance. A single starting

trigger might cause the seeding of a random number

generator with the current time, allowing the program

to progress on a new path with associated musical

output revealed in realtime.

It is hoped that this article will promote under-

standing of contemporary art practice in algorithmic

music. There is also some potential that tackling the

limiting case of non-interactive algorithmic systems

(which shall themselves present many rich problems)

can contribute to an understanding of more general

interactive music systems. This research may assist

composers employing such mechanisms who yearn for

greater insight into the relation of process and product.

Some care must be taken with any claim for the

existence of an independent discipline of ‘analysis’; yet

analysis, even in the most practical senses, is necessitated

so that greater control of musical outcomes can be

exhibited in algorithmic systems. Such analysis also

points to the assumptions of current systems and

potential of future systems, and satisfies innate human

curiosity regarding such artefacts.

With these aims in mind, it is fruitful to spend a while

unpicking the various strands of debate and terminol-

ogy, for the existing literature is not always consistent,

as detailed below. The reader has probably already

picked up on a tension between the terms ‘algorithmic’

and ‘generative’, and the mention of process and

product may raise questions concerning the composi-

tional responsibility, social context and analogies to,

say, improvisation of such work. Ultimately, the issue of

where the music itself resides – implicit in an executable

program, explicit in a given ‘play’ – forms an over-

arching theme of discourse on such musical objects.

After treating terminology, examples of particular

generative music systems will be given that help to

clarify the objects under discussion. With an awareness

of the human prevalence to categorisation (Lakoff 1987)

it is helpful to consider central exemplars, and avoid

delimiting hard boundaries around categories; overly

prescriptive taxonomies deny the continuums of real

practice, though they can form helpful tools as long as

we bear their claims to full description as approximate.

The article then proceeds to introduce some particular

analytical methodologies that may prove useful in
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discussing and learning from algorithmic systems. These

are applied in the final stages of the paper in treating two

necessarily smallscale examples; there is enough to

discuss even in these cases to demonstrate the scope and

challenges of such work.

2. DEFINING GENERATIVE AND

ALGORITHMIC MUSIC

In a recent seminar, Margaret Boden outlined a

taxonomy of electronic and interactive art devised with

Ernest Edmonds (Boden 2007). In their terms, G-art

(generative art) is composed of works that are

‘generated, at least in part, by some process that is not

under the artist’s direct control’. A further sub-category
of CG-art refers to specifically computer-generated

work, ‘produced by leaving a computer program to

run by itself, with minimal or zero interference from a

human being’. Phil Galanter (2006) is also inclusive of

non-computer-based work in his discussion of genera-

tive art. The rich artistic heritage underwriting this

stance in the specific case of music might pay tribute to

more than forty years (perhaps counting from Riley’s In

C of 1964) or fifty years upwards (perhaps counting

from Earle Brown’s December 1952) of process, system

and indeterminate music. These musical movements

themselves parallel conceptual and new media art

historically, and homage must be given to Sol

LeWitt’s famous assertion that ‘the idea becomes a

machine that makes the art’ (LeWitt 1967). Conceptual

art’s currency of often illogical and unmechanisable
concepts, instantiated by human beings, is replaced in

much digital generative art by well-defined (computa-

ble) concepts enacted via machine; yet the human

originator is ever present, even if acting by proxy.

Any definitional complexity in this debate is essen-

tially due to the rise, ubiquity and indeed indispensa-

bility of computers in contemporary (digital) art

practice. Computers simply require formalisms, and
must be programmed with exact instructions, that is,

algorithms (taking the spirit of the computer science

definition of an algorithm rather than admit any less

rigorous art critic’s notion in using such a term).

However, in seeking to differentiate their art (often for

publicity) some artists have adopted generative music

(Eno 1996) as a more rigid description of algorithmic

music that happens to produce output in realtime. ‘Good
Old Fashioned Algorithmic Composition’ might there-

fore be distinguished as an offline tool (Ames 1987; Loy

2006; Pearce, Meredith and Wiggins 2002), providing

suggestions as a composer’s assistant, following rules

for the production of musical scores or recordings and

otherwise not making so central the algorithmic process

itself in the final product.

It must be admitted then that generative music as
discussed in recent academic literature (Collins 2003;

Cox and Warner 2004; Eacott 2000, 2006; Eno 1996),

and in online communities such as generative.net, may

actually often refer to computer-generated algorithmic

music which happens to be realtime in production, a

subcase of both generative music and algorithmic music

as more widely defined in art theory and computer

music. Analytic work described in this article can

profitably engage with any algorithmic music generator.
In Pearce, Meredith and Wiggins’s (2002) terminology

of automated composition research, all works would

primarily fall under the remit of ‘algorithmic composi-

tion’ for the sake of art.

Thus, although we have seen that definitions of

generative art would not restrict themselves to computer

programs alone, programs provide a standard exem-

plar, where the operation of the artwork is free of
complicated human intervention during execution. This

pure computer-generated music (CG-music) will be

tackled in the remainder of the article, and we shall

refer to generative music programs or algorithmic music

where the connection to computation is clear. Thus,

human computation (von Arn 2006) is barred, so that we

also exclude instances of algorithmic art such as live

coding, interactive genetic algorithms or text music for
human interpretation as outside the remit of the current

investigation. The hope, however, is that any insight

into the relation of algorithm to musical production will

be helpful once live human beings are reintroduced.

Human work has not been entirely sidestepped; we

must always accept the precursor of human design. In

philosophical terms, generative computer programs are

examples of the derivative intentionality of writing
(Searle 2004: 20), where the code is predetermined by

a human author who then yields moment to moment

autonomy of execution to the machine. Human

intervention is thus reduced to initial conditions alone;

control is usually choosing when to start the program,

providing the seed for the random number generator.

Programs are in principle well-defined; it certainly

complicates matters to have human beings sitting inside
deciding on moves, as within the famous chess-playing

Turk, and there will be enough difficulties already even

when composers have specified each action in iron-clad

code.

The final hurdle before we progress to consider real

examples is to mention the process versus product

debate. Art itself is replete with examples of the claims of

a human being for an object’s ‘artistic status’ leading to
the grant of that status and a transformation of the

bounds of art. Some might see this cultural negotiation

as having gone to breaking point in the 20th century. A

cogent and passionate defence of the status of a

generative program rather than an individual produc-

tion as an artwork has already been presented by Ward

and Cox (1999) in discussing Adrian Ward’s Autoshop

application.
In a very practical sense, that musicians are choosing

to create programs which create music is a noteworthy
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development that can be profitably engaged with by

musicologists and artists alike. The analysis undertaken

in this article will attempt to relate the program itself to

its possible productions, giving insight into the human

effort (designing the process), but always with a view to

the outcomes (the products which are each individual

run of the program). There is no absolute division;
anyone who has created CG-art knows the intimate

negotiation between design of a program and feedback

from program output. In this sense, during the design

cycle CG-music is highly interactive. Yet development

of a program must be frozen at some point and the

generative object released (and sidestepping additional

machine learning carried out during operation). To cite

Gregory Chaitin, computer programs are ‘frozen
thought’ (Chaitin 2007); they stand as beautiful

(human), artistic, creative, intellectual objects.

Algorithmic music is compositional design at a meta-

level, human creativity in musical representations,

examination of particular rule sets in a space of multiple

music theories, with the composer–designer–musician

becoming a ‘composer-pilot’ (Xenakis 1992) through

musical modelling space. Composers model composi-
tion itself, and such systems give us valuable insight into

the relations of music theory, musical design and aural

instantiation.

3. EXAMPLES OF REALTIME COMPUTER-

GENERATED MUSIC

Brian Eno’s 1996 Generative Music 1 installation, which
utilised the proprietary Koan software to provide a

continuous ambient installation environment in a

church, helped to provoke interest in ‘generative music’

in the last decade; we have already discussed how the

name of his installation stuck as a definition of realtime

CG-music.

As always in human endeavour, the currents are

much broader than a simple reading might appear.
Aside from algorithmic and interactive music (Chadabe

1997), tribute should be made to the demo scene

fostered since the 1980s (http://www.scene.org). This

movement grew at first around the programmed ‘tags’

(calling cards) of game hackers, who provided new

introduction sequences to the games they hacked, as

advertisements and boasts of prowess (pioneer crews

include rival Dutch outfits The Judges on the
Commodore 64 and The Lords on the ZX Spectrum,

though the earliest crack intros were for Apple II

computers). Algorithmic techniques were used by

necessity in the production of more elaborate animated

demos, as 1980s home computers lacked the memory to

load large pre-rendered movie sequences. This heritage

is evident in current screen savers, which still use such

realtime algorithmic generation to great compressive
benefit, to procedural audio and animation for games.

Yet, in the demo scene, graphics have been the main

focus of generative processes. Music for demos is

typically fixed sequence playback, though early demos

exploited the sound synthesis quirks of 8-bit audio

cards, rendering live from hard-coded tracker files (for

example, Charles Deenen’s circa 1985 Game Music 1–9

for the Commodore 64, or the work of other 1980s game

music composers such as Jeroen Kimmel and Rob
Hubbard).

In contemporary computer-based generative art

work, whole communities have grown up, such as

generative.net and the associated eugene mailing list,

with many artists exploring generative visuals in web

software, but many also exploring realtime algorithmic

composition and rendering of music. To ignore such

scenes is to ignore a rich endeavour in current
experimental music. It is also important to note that

the scene is astylistic; whilst much of Eno’s work might

be described (in his own words) as ambient, diverse

manifestations are exhibited by those in The Algorithmic

Stream or rand()% streaming algorithmic radio sta-

tions, Karlheinz Essl’s Lexicon Sonate (even in its non-

interactive version), or my own Infinite-Length Pieces.

Indeed, algorithmic artworks in the form of programs
produced for various computer music systems from Pd

to CM to the SuperCollider demo examples are further

examples, devised within the realtime feedback of

contemporary computer-music programming lan-

guages.

In case it is still unclear, any algorithmic method

might be applied, and this potentially includes all

artificial intelligence techniques. The extent to which
such algorithms have yet to be harvested makes this an

open research area; there are favourite techniques,

controlled probabilistic expert systems being a typical

route. Jem Finer’s LongPlayer can be characterised as

utilising deterministic isorhythmic layers, but whilst this

may reveal one strategy, algorithmic music systems do

not stop there. Some authors have not appreciated this

full scope, favouring a particular technique to the
exclusion of others. For example, the phenotype/

genotype distinction for programs and outputs drawn

by McCormack and Dorin (2001) is not pursued further

in this article as being too closely locked to evolutionary

computation, only one strand of AI techniques

employed in computer-generated music.

I shall describe one particular generative artwork in

more detail, Thor Magnusson and Runar Magnusson’s
SameSameButDifferent v.02 (Magnusson and

Magnusson 2007). This system is activated from a

simple control panel containing a start/stop button. The

source material for the work is a large set (262 MB) of

sound recordings from Iceland, which are layered and

processed live with each run of the work, though

processing is relatively restrained in keeping with sounds-

cape recomposition. Three to seven distinct soundfile
layers will appear in a given 5–7 minute production,

sometimes leading to impossible environmental pileups:
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cavern, bird, boat and bubbling rocks in one observed

instance. Sufficiently long soundfiles are prepared to

avoid the sensation of looping – for example, some

birdsong segments are up to two minutes in length – and

are further processed in playback to maintain essential

variety. There is a facility to store and recall particular

random number seeds, represented as character strings

for easy ‘composition’, and users can record favourite

passages as soundfiles for their own linear listening away

from the generative system itself. The authors char-

acterise this as playing with the conventions of use of

digital media, for their program is not restricted to a

single output, but its productions can be judged as

particular instances of music when favourites are

selected for archiving.

4. VARIATIONS ON ANALYSIS

Rather than storing a fixed recording of finite length, an

algorithm can embody the potential exploration of

massive parameter spaces, allowing infinite (or effec-

tively infinite, see Collins 2002) play times. Yet this very

compression means giving up the idea of a single

product and exploring a potential panoply of outcomes.

The game in generative music is for the composer to

enable a suite of possible products; integrity demands

that each production be of sufficient merit to honour the

system that produced it. The extent of variation of the

system on multiple levels is claimed to be of aesthetic

worth by generative artists, and becomes the very factor

that challenges analysis.

A key question then is the extent to which any system

can truly claim a varied output, and how to measure and

analyse the extent and content of productions; in short,

how many runs are representative? Music’s innate

combinatoriality of material lies in wait for us here

(Prokofiev 1978: 46–9). As Sergei Sergeyevich noted

even in the case of a classical melody, the explosion of

the parameter space size with each new choice of note

pitch guarantees a world of useful productions. Most

parameter spaces for programs are bigger than the

number of atoms in the observable universe (Collins

2002). If linked to a single random seed, this scope is

reduced to a number of paths (possible productions)

controlled by the number of distinct values of the seed.

To give an example, in SuperCollider the seed is given by

three 32 bit numbers, or of the order of 1028 options, so

that it would take more than 1023 years to listen

continuously to all possible three-minute productions;

the universe is estimated to be 14 billion, or of the order

of 1010 years old. In an ‘infinite play’ situation, just

running from one seed, the pseudo-random number

generation draws an infinite number of times with a

period of 288 and the full combinatorics in interaction

with the mathematical parameter space is frighteningly

large.

Fortunately, for the purposes of analysis, the

psychological space of outputs is typically much more

constrained than the mathematical space of a program’s

runtime avenues. Analysis must confront the relation of

the internal space of a program (initial state and

algorithms) to the psychological space of potential

outputs. Indeed, the essential problem of musical
analysis is never sidestepped, in that there are a number

of relevant levels and viewpoints from which to consider

the cognitive affect of a piece of music; different listeners

may more quickly or slowly discount the variability of a

given generative artwork depending on cultural expo-

sure to music of that nature and choices of attending.

A fundamental aim in analysing a computer-

generated musical work therefore is to explore the
relation between source and production. Rather than

misleading or incomplete analogies to object-oriented

programming and the aforementioned genotype/phe-

notype distinction, the clearest expression of this task is

to explain a given output (a production) in terms of the

originating program (a source). Knowledge about such

mechanisms allows one to predict the space of future

outputs, and thus truly delimit the scope of a given
compositional model/music theory/program with

respect to both craft (emic) and aesthetic (etic) outcome

– that is, poeisis and esthesis. The next sections relate

tools to approach this aim. Mathematical parameter

space analysis founded in software analysis techniques

drawn from software testing can break down the

program, and are combined with psychological analysis

of associated musical resultants.

4.1. Black box and white box testing

Investigation of the relation of source to productions

can be informed by a consideration of the difference

between black box and white box testing in software

engineering (Lano and Haughton 1993; Myers 2004). In

black box testing, the program is left unopened, perhaps
because it is only available as a binary executable that

cannot easily be cracked and returned to human

readable code (many comments and clues would be

lost forever even if this could be achieved). In white box

testing, access is granted to the original code itself, from

which a more detailed analysis of possible productions

should be possible. In practice, software testing is a hard

pursuit; Myers (2004) claims it to require more ingenuity
than devising the actual program.

Testing within a framework of software engineering

may rest upon knowledge of the task specification, from

which unit tests can be devised; yet in the worst case we

may have a sealed executable program with little or no

information from the author as to its intended out-

comes. Anti-archivists might imagine a future civilisa-

tion somehow desiring to reverse engineer the
generative musical works of a lost digital media scene.

It is always more helpful to have access to the original

240 Nick Collins



representational source rather than indirect evidence of

that source. In some cases, reasonable assumptions

may lead one to reverse engineer the contents of a black

box. This process is perhaps already familiar from

technical analysis of electronic music works released

without their studio sources (for example, the actual

sequencer data which gave rise to a piece).

A note of caution: assumptions of reasonable

behaviour are essential. Marsden’s Maxim might be

borne in mind:

To establish a system for representing any aspect of music

is almost a challenge to a composer to invent music which

the system is incapable of representing. (Marsden 2000:

168)

Composers can always devise generative music pro-

grams that are difficult to analyse. Imagine a program

that is set to generate bland clicks on its first hundred

runs, but fires into a wondrous world of sound on the

hundred and first. Deliberate statistical perversity

like this has to be discounted in keeping analysis

tractable.

In some cases, the exact details of the generative

program may not be recoverable, or necessarily

essential. Indeed, dissimilar program code can still

achieve a sufficiently similar or identical musical output,

as judged from psychoacoustical and cognitive con-

siderations (determining similar categorical boundaries)

or from multiple software representations leading to the

same ‘answer’. Listening tests (Pearce and Wiggins

2001) or further automated analysis on a sample of

recordings may be preferred approaches, focused more

strongly on the production side. But, wherever possible,

white box testing is preferred as giving additional

insight.

4.2. Representatives

We could always run a generative music program once

only, harvest a single production of five minutes, and

claim this to be representative of the work. Any

conventional aural and musicological analysis can then

be applied to the fixed product so obtained.

Unfortunately, this would be a gross abuse of the

reality of generative music systems, which are designed

to create multiple productions; we would have learnt

nothing of the mechanisms by which such programs

operate, of the musical model underlying them, and of

the scope of future productions from that program. The

paradigm shift from composing single works to creating

machines that embody a compositional theory creates a

more difficult analytical problem. Multiple representa-

tive productions must be drawn from the artefact; the

question then becomes, how many are actually repre-

sentative?

This question can be posed as a statistical problem.

Unfortunately, there is no guarantee that productions

will follow a normal distribution within the parameter

space. Random sampling (running the program over

and over) must provide good representatives so that

tests on the sample are indicative of true population

behaviour using standard statistical procedures

(Spiegel, Schiller and Srinivasan 2000). Nevertheless, a

pragmatic approach is reasonable; most statistical tests
are relatively robust, and there is little else that can be

done than take a sampling of outputs.

It should be noted, however, that the choice of how

many to take may be influenced by the decision on how

to analyse and compare the productions themselves; for

what may seem a reasonable cross-section of represen-

tatives with respect to one musical facet may not be

exhaustive of productions for the generative program
with respect to another. This may form the key basis for

criticism of any individual analysis of a given work, and

at the least, if publishing work, one must take care to

make assumptions explicit over sampling procedure.

For the white box testing case, given the relation of code

to outputs, in certain situations it may be possible to

make an argument that coverage of program avenues is

sufficiently complete to provide an accurate sample.
To sample more productions, it would be convenient

if we could run an automated critic/analyser; this is a

further computer program that embodies a particular

analytical model, just as the generative music program

may represent a compositional model. Yet we must

collate the database of output versions first. This

collation may not be possible at anything less than

realtime speed, given the performance character of those
generative works we have been considering (and there

are algorithmic composition programs that are slower

than realtime too). In certain cases, with access to the

source, the code may be adaptable to a faster than

realtime rendering mode to assist this. Nevertheless, it

must still be argued that the database so formed is

indicative of productions, which itself may require

realtime playback of representatives (an argument from
code would be necessary to circumvent this, proving yet

again the intimate relation of source and productions in

this analytical dialogue).

Once created, a database is amenable to automated

analysis methods, essentially music transcription meth-

ods from current disciplines such as music information

retrieval. The usual issues of computational auditory

analysis are inevitably raised, for we are depending on
signal processing routines instead of the human ear, and

computational methods have not exhibited anything

like the acuity of the human auditory system. A

caricature of current research might acknowledge

certain gross timbral measures and transcriptions with

success rates from 40 to 80% or so as currently available

(Klapuri 2004, or see the results of recent MIREX

algorithm evaluation contests); yet transcription is
sometimes ill-defined and most auditory mechanisms

remain beyond the state of the art. However, there is
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some hope that mechanisms may be found that (verified

through independent psychological tests) can be

employed with some reasonable trustworthiness.

Indeed, the domain of computer-generated work is

challenging enough that investigation of such technol-

ogy may be enforced. To place one last proviso, effective

auditory models are not necessarily going to calculate at
any rate much faster than the human brain itself, and

may be orders of magnitude slower. Since the human

mind is the arbiter of musical appreciation and social

musical discourse, and the automatic transcription

technology will always fall somewhat short of being a

real human being, it would be unsurprising that the

human mind remain the best judge.

The reader may be wondering if reductionism might
help us? Where we have access, can we simplify the

procedural code (if not the psychological space model)?

We surely risk losing increasingly obvious nuances of

the composition; in fact, we may irrevocably damage the

composition with any such step, particularly for

emergent non-modular behaviour. An example will be

given below where two characters added to a program

substantially alter its audible output. Spotting such
situations requires some heavy duty software engineer-

ing, and justifying substitutions may require exactly the

same analysis that we were seeking to make in the first

place.

For those who may have reservations on the

programme I have outlined here, I note that I make

no rigid stipulation of the exact musicological assump-

tions that must be applied. I favour myself a full
grounding in psychophysics and the psychology of

music; others might consider the timbral and spatial

concerns of spectromorphology primary, and these are

not irreconcilable. But I hope I have provided some

justification for treating both program and productions,

and indicated a need to bridge between process and

product if we are to truly analyse and explore

algorithmic music programs.

5. EXAMPLE ANALYSES

Having raised many potential problems within the

analysis of computer-generated music, it is still I believe

feasible to tackle such analysis, taking care to be explicit

about our sampling and musical assumptions. This

section will include two analyses of short works by
James McCartney, the original author of the

SuperCollider audio programming language

(McCartney 2002), which illustrate the points made in

the preceding sections of this article. The pieces are

demo examples available in the (open source)

SuperCollider distribution, and were chosen in part

for their easy availability and in part because the terse

but dynamic work of McCartney rewards study.
McCartney is not an official establishment composer

(which may be for the better!) and is known far more as

a computer-music system designer; these demo exam-

ples provide a small-scale test commensurate with the

space available. Future articles may confront in depth

the cases of particular larger-scale generative music

programs.

All code is open source under the GNU GPL licence

for SuperCollider and this allows white box testing and
easy modification for assessment. I have preserved

James McCartney’s original comments, added a few

additional comments, and tried to make the code

generally presentable so that even a reader with little

SuperCollider knowledge can at least have a chance of

seeing what is going on. To assist understanding,

natural language pseudocode of each program is also

provided, though the provisos about reductionism must
be borne in mind; these reductions should be taken as

aides for the reader, and cannot encapsulate every detail

of the full programs. Full understanding of the code

itself necessarily rests on studying the programming

language in question, an essential skill for generative

music analysis which employs white box testing. Certain

lines are marked in the comments with a /*x*/ number,

which allows them to be further discussed in the main
body of the text, and the pseudocode also maintains

these markings at the critical place as carefully as

possible given the reductionism.

5.1. Synthetic Piano by James McCartney

To accompany the analysis here, figure 1 gives the

original SC code, figure 2 pseudocode, and figure 3
compares spectrograms for two 30-second productions

created with the Synthetic Piano program. In order to

keep the visuals uncluttered, figure 3 was created using a

mono version of the program with only three voices

rather than six. These spectrograms may be useful for

the reader to visualise the exact repetition of each note at

a particular phase and period; since the top and bottom

spectrograms are from consecutive runs, they provide a
limited view into the variation of the program, but we

must be very careful not to read too perfect an aural

analysis into the spectrograms, nor take two runs as

necessarily representative.

The example code (originally for SC2, 1998) is

devised entirely as a specification for a sound synthesis

patch, defining a particular unit generator (UGen)

graph to run on the SuperCollider synthesis server.
However, each time the patch is run, it generates a graph

differing in certain properties sufficient to give varied

aural output. The sound synthesis method is a simple

but effective source plus filter physical model, using an

excitation pulse (a smoothed impulse train) passed

through a tuned comb filter, thus approximating a

Karplus-Strong model. The patch has n voices, n being

the sole input parameter specifiable by a user, defaulting
to n56 ‘notes’ as set initially at /*1*/. There is also a

hidden parameter, the seed for the random number
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generator, which is controlling the rolls of the dice for

/*2*/ and /*3*/. A separate random number generator is

implicated in the LFNoise2 UGen on line /*4*/, but it

runs during the live synthesis rather than in the

initialisation of the UGen graph.

Listening to the patch a number of times will quickly

convince a listener that the process is relatively

constrained; indeed, the shortness of the code example

here is sufficient to convince oneself of the limits of the

psychological parameter space. Since the program

effectively determines the base (MIDI note) pitch of

the strings at each run, from a range of 54 options

(54.rand at /*2*/), there are 54n possibilities, thus only

24794911296 for n56. This number might be limited

further by considering transpositional equivalence,

though there is a further timbral implication; but the

mathematical combinatoriality is evident.

/*3*/ introduces a further proliferation of options, by

determining the strike rate of each string in terms of

period and phase. Whilst floating point ranges are used,

psychological considerations of temporal perception

might limit the options. The range of possible periods is

from 2 to 10 seconds (frequencies of 0.1 to 0.5 Hz), and

phase can take any value within the cycle; since human

temporal perception is unreliable for periods greater

than 2 seconds (London 2004), we might substantially

Figure 1. Original SuperCollider code for Synthetic Piano with added comments.

Figure 2. Pseudocode reduction of figure 1.
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drop the number of options; the temporal result is

somewhat like a slow mobile set in motion, where the

recurrence of certain voices and the tracking of phase

relationships is inherently difficult. A coarse analysis
might claim that the temporal information is of no

significance in accounting for inter-run variation at this

point. There is one quirk however; an Impulse UGen

should usually have a starting phase from 0 to 1.0, as a

proportion of a cycle. Those in the synthetic piano patch

are initialised from 0 to 2pi; due to an interaction with

the low-level specification of the Impulse itself (obtain-

able only because SC is open source), any phase value
greater than 1 will cause an initial strike on starting the

patch, such that a near aggregate chord across the keys

of the piano is heard commencing each run. This

behaviour could be corrected by 1.0.rand instead of

2pi.rand in line /*3*/. It is hard to say whether this is

deliberate or a mistake in converting the code from SC2

to SC3 in 2002; one is reminded of the ‘errors’ in

Xenakis’s GENDYN code (Xenakis 1992), which are
certainly part of its character.

Some elements of the patch are deterministic; in other

words, the pan positions depend on the pitch of each key

(/*5*/). Various constants scattered through the patch

can be modified, perhaps departing from the author’s

original intent, but providing clues to the empirical

construction of the patch; for example, McCartney’s

original comment admits choosing 3000 Hz by ear at
/*4*/. Summarising the generative system, it may be

viewed as a soundscape generator; lacking longer term

directives of structure and exhibiting a flat hierarchy,

form is coincidental, not planned, a consequence of

linear probability distributions over initialisation para-

meters primarily at /*2*/ and /*3*/.
Given the amount that might be said concerning this

patch in relation to its size (and whose perceptual effect

might be the subject of further listening tests with

multiple subjects) the compressive benefit of generative

systems is evident. As one final observation, consider

the addition of two characters to /*2*/, namely 54.rand

becoming 54.0.rand. The switch to a floating point

range now brings in microtones; at an estimate of
microtonal sensitivity at 24th tones, the parameter space

grows by a further 12n and twelve tone equal tempera-

ment is immediately lost! This is pointed out as evidence

of the heady consequences of even small changes to

source code.

5.2. From a workshop given by James McCartney in

Santa Cruz on 6 June 2003

The second realtime algorithmic music program was

originally conceived as an example for a workshop

(McCartney 2003), and is in two parts, the first

comprising a generation of particular recipes for the

sound synthesis of metallic percussion sounds, and the

second specifying the realtime scheduling of those

sounds. In this manner, since either part may be
renewed when desired, the work has a certain generative

ambiguity; there are issues here of the reusability of code

Figure 3. Comparing spectrograms of two (mono) productions from the Synthetic Piano code, each 30 seconds long.
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and the potential of different code substituting either

part. In the original (http://lists.create.ucsb.edu/

pipermail/sc-users/2003-June/004129.html), there is also

a further separate effects unit with mouse control, which

is added once the process is underway, but this optional

extra is kept from this example for reasons of space, and

to sidestep further issues of interaction.

Again, the analysis is accompanied by original source

code (figure 4), a pseudocode reduction (figure 5) and a

visual aide. The spectrogram in figure 6 was created

from 20 seconds’ worth of one mono production, for a

limited demonstration of density and timbral properties

only, as discussed below.

Treating the definitions of the metallic sounds first

(the first block of code in figure 4 in outer parentheses,

with the SynthDef construct), aural comparison con-

firms the use of metallic plate sounds with varying

resonances. The sound synthesis method revealed by

the source code is that of a white noise excitation

shaped by a decaying impulse linearly drawn from

0.2 to 1.0 seconds (/*2*/) passed through a filterbank

represented by the Klank UGen (/*3*/). Parameters

of this filterbank are all drawn from appropriate

ranges, exponentially for filter centre frequencies and

ring times, and linearly for amplitude gains (though

this might also have been made exponential through

the use of decibels, for instance). The number of

filters in the filterbank is defined by n512 at /*1*/,

though again this constant might be modified by the

user; tests show that for low n, the spectral recipe is

too simple, producing singular ring components that

fail to simulate the body responses of real world

objects, but instead sound like 1950s studio experi-

ments. Higher n (i.e. n530) are not particularly

different to n512, but increase the sense of a

blacksmith’s forge (more violently struck metals).

All sounds are panned randomly within a flat plane

square four-speaker set-up by the PanAz UGen (/

*4*/); McCartney’s entire workshop was carried out

with such a spatialisation.

Figure 4. Original SuperCollider code for Santa Cruz workshop piece with added comments.
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It should be noted with respect to earlier comments

on automated analysis that we could analyse the

spectral variety of sounds in this instance by, say,

generating 400 and comparing their spectral recipes. Yet

the SynthDef itself already gives us the spectral

properties of the filter, and this is a case where the

human ear is trusted, in alliance with an understanding

of the sound synthesis method employed. There is no

doubt that representatives of the sounds in this case are

well covered by reasonable sampling of this nature.

Moving onto the scheduling portion of the work, one

of the chief motivations in analysing this particular

example piece is to point to the beauty of the code at

/*8*/. The infinite scheduling loop (within the Task) is

designed to wait for a certain duration, the current value

of the dur variable initialised at /*5*/, between triggering

sounds. The duration is expressed (by default) in

seconds, but in /*8*/ is itself used to form the probability

of taking on a new value; in effect, long durations give a

high chance of change, for isolated slow pauses, and low

values give a low chance of change that cause flurries of

fast events. Durations over 1 (1.6 being the only option)

are guaranteed to only happen once before a new choice

of duration. However, the durations are chosen from an

Figure 5. Pseudocode reduction of Figure 4.

Figure 6. Spectrogram of 20 seconds of sample (mono) output from the Santa Cruz program, demonstrating the rhythmic

densities and spectral recipes in play.
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array with a linear distribution, so there is a one in ten

chance of two 1.6-second gaps in a row, a one in a

hundred chance of three, and so on. At the other end of

the scale, the 0.05 gap might on average correspond to

twenty repetitions before a change of the duration value.

In rhythmic terms, ten events per second is the human

motor limit for repetitive actions without chunking
(London 2004), so 20Hz action is inhuman; there is no

jitter or other expressive timing built in, so that the

machine quality is evident. This all adds up to an

arresting rhythmic sequence that is definitely inhuman;

our categorical perception of rhythmic values in relation

to metrical structure tends to make it difficult for us to

deal with ten distinct time values as accurately as the

computer.
Timbral variation is achieved by exploiting the forty

stored sounds and their control parameters through

/*7*/, which scales the spectra of filter frequencies. A

new instrument and amplitude is selected on average

every 3.33 strikes due to /*6*/. Yet the overall effect is

one of subtle timbral variation, due to the uniform

sound synthesis method underlying the instruments;

the listener is within a manic metallic machine that has
the capacity to pause in dramatic fashion. The patch

has the character of a demonstration, but could be a

stepping-off point for something much richer; yet, it

still provides plenty of food for thought for the

algorithmic music analyst, belying its size as a morsel

of code.

Neither of the two example programs tackled above

shows longer-term form or significant variation of
output in the way being designed into some current

algorithmic music systems. They are simply entry-level

works to enable the grasping of the problems of analysis

in this domain, and were picked as much as anything for

their terseness, which allows the whole program to be

examined here. Future analyses may take an entire

article to tackle one single work, and only be able to

quote salient extracts of code. It remains an open
question to consider how the ploys discussed in this

article might scale up to creative systems built to engage

in much more challenging and varied behaviour.

6. CONCLUSIONS

Artists are drawn to the medium of generative music for

many reasons, from compressive benefits through love
of system to love of the infinite. An analytical

engagement with these works is productive and healthy

to much contemporary artistic endeavour, for the artists

as much as the musicologists. This article has sought to

clear up some of the history and terminology surround-

ing generative music, focusing in on generative music

computer programs in particular.

The methodology outlined in this article is grounded
in software testing techniques and in literature on sound

synthesis and music cognition. Two examples of this

approach have been given for short generative works by

James McCartney. But no claim is made that this article

somehow embodies a complete set of tools and

approaches for analysis, even if there could ever be a

final solution to the problems of analysis. Inevitably,

there is a great deal more to learn as we tackle this music.

There are no doubt other profitable avenues that might

be transplanted to the domain of generative music

program analysis, from musicological insights on

corpuses and style, to generative linguistics and

creativity in musical improvisation. It is also hoped

that computer-generated-music analysis may be related

to and also give some entry to issues in the analysis of

interactive music systems, where responses are founded

on generative techniques.

Indeed, the difficulty of treating complex algorithmic

music systems has only been touched on; how could a

meta-system be approached, created to itself create

generative music programs? How can investigation be

scaled up to deliberately massive algorithmic works?

These are questions that could keep analysis busy for an

infinite length of time; it is tempting to build a generative

program for the analysis of computer-generated

music…
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