
Caring for the Instrumentalist in Automatic Orchestration 
NICK COLLINS 

Centre for Electronic Arts 
Middlesex University 

Cat Hill, Barnet, Herts, EN4 8HT  
UNITED KINGDOM 

n.collins@mdx.ac.uk   http://www.axp.mdx.ac.uk/~nicholas15/ 
 
Abstract: - As part of a general scheme for automatic orchestration for human instrumentalists this paper 
focuses on the eventual performer of algorithmically generated music. A cost function is presented to measure 
the material they must play in terms of fatigue and difficulty of performance on the instrument. This cost is 
independent of attempting to match the character of music to a given instrument, and the exposure of a given 
instrument in the piece as a whole. We consider a self contained algorithmic composition module for 
orchestration of pre-composed material, though the material is adaptable to other circumstances. Assumptions 
of the model are made explicit in the text wherever possible. The paper ends with an example implementation, 
and a set of suggestions for further work. Whilst the model has its flaws, the aim of this paper is as much to 
promote consideration for the instrumentalist playing an algorithmically composed score. 
 
Key-Words: - automatic orchestration, algorithmic composition for acoustic instruments 
 

1 Introduction 
 
Orchestration is just one task in algorithmic 
composition, and has not always been a historically 
prominent one. It is pleasing then to see Lejaren 
Hiller in [5] discussing instrumentation in the 
second movement of his Algorithms 1 thus: 
 
'I used an instrumentation process for this 
movement that interchanges instruments, giving the 
high wind instruments breathing space. The 
individual lines can be quite long and taxing 
otherwise'  
 
Hiller understands that if scores for human players 
do not take account of the performer's fatigue they 
will not get an accurate performance. One can also 
consider the physical technique required for an 
instrument. Charles Ames' composition for piano 
Gradient [1] only utilises chordal spans that a 
human hand might comfortably reach.  
   In contrast, Koenig's Project One program was 
never intended to orchestrate, only to provide the 
material for the composer to fashion into a finished 
score- 'the balanced distribution of the material 
permits different interpretations'  [6]. Project Two 
is a step into automatic orchestration and will 
produce a finished score ready to write up, though 
the amount of consideration for the performer is 
doubtful. Discussing Koenig's Projects One and 
Two, Laske [7] points out the parametric conflicts 

that writing for instruments causes- 'Only a limited 
number of pitch classes, octave registers, durations, 
amplitudes and modes of performance can be 
realised with any chosen instrument'. Yet this 
knowledge is only part of a consideration of the 
technique of an instrumentalist. It is not just what a 
performer can do for any one event, but the ease of 
performance of a sequence of events over the 
course of a piece. 
   Surveying the literature of algorithmic 
composition, it is interesting how rarely the 
instrumentalist is mentioned as an important 
concern. The difficult leaps of a pointillistic style 
abound in algorithmic composition (see the score 
examples in [2]). As an example of a less caring 
orchestration procedure, the piece Entre l'Absurde 
et le Mystere for chamber ensemble described in 
[9] had the following instrumentation process 
'Finally the user specifies the instrumentation of the 
composition by associating each possible state of 
the Demon Cyclic Space with a General MIDI 
Instrument'  An orchestration that favours the 
players will only occur by chance. On the other 
hand, this piece received a performance in 1995, 
but this doesn't mean every note is playable. 
   Perhaps it is tempting not to prioritise the 
instrumentalist because professional players can be 
expected to attempt to play almost continuously. A 
flautist confronted with one minute of semiquavers 
will breathe whenever they must to navigate the 
passage as successfully as humanly possible. 
Certain instruments, like strings or the piano, might 



be considered practically inexhaustible! Statistical 
distributions or other methods utilised in 
algorithmic composition can be fine-tuned to 
spread notes in a such a way that nothing too 
arduous for any one given performer occurs. The 
scaling of a process will avoid notes that are too 
quick to play accurately or too long to play at all. 
Xenakis's Stochastic Music Program ( [11] pp 837-
838)  has a parameter for the longest duration 
playable by each instrument, and Xenakis is not 
adverse to tweaking output ([11] pp 845). Yet one 
can only remove or disfigure grossly difficult 
passages by hand if the material is not critical. In 
an orchestration of a pre-existing composition, or 
an algorithmically generated piece where the 
minutiae are still vital, this kind of post-process 
meddling will invalidate the orchestration process, 
a process which should really be rethought.  
   In this paper a cost function is presented to 
measure the difficulty of monophonic phrases for 
particular instruments in terms of how tiring those 
phrase are to play, and how technically demanding, 
though without specialisation to the sound 
production methods of each instrument. This 
function is supposed to raise awareness of the 
eventual performer of the algorithmically 
composed score and make the performer a more 
central concern of an algorithmic composition. 
   The study connects to the area of expert systems 
for orchestration. A composer's assistant for 
orchestration is discussed in [10]. The IOS system 
described therein searches out phrases and allows 
allocation of features of phrases to given 
instruments, but has no provision for the 
instrumentalist themselves (to be fair, Roads' work 
is also geared towards digital sound realisation). 
Automated orchestration is definitely a current 
topic. In a recent survey of developments at 
IRCAM ([16], also [3]), Hughes Vinet claims that 
researchers are working on automated assistance 
for orchestration within the OpenMusic project, 
though no precise details are given.  
   In the following, the orchestration module is 
separate to the musical material, and it is assumed 
that the material is already parsed into a particular 
format. Considering the act of orchestration 
independently of the act of composition of  musical 
material is a terrible simplification for real 
composition straight to orchestra, but still an 
instructive one for the act of arrangement and 
orchestration itself. There is much work on 
segmentation and analysis, and algorithmic 
composition ([4], [14], [15]), relevant to what 
would be required to produce an input for the 
orchestrator. Finally, a good review of algorithmic 

composition from the perspective of connectionism 
is in [8]. 

2 The Model 

2.1 The Orchestrator Module  
 

Composer/Analyser Instrument Database

Phrase List Instrument List

Orchestration Module
 

 
The orchestrator model described here is relatively 
simple. The input is a list of monophonic phrases in 
a suitable format, comprising the entire musical 
material of the piece, and a list of instruments to 
which allocation of individual phrases must be 
carried out. As each phrase is assigned to a given 
instrument, it is removed from the list of phrases to 
be allocated. There is no attempt to consider co-
temporality of phrases, or any hierarchical structure 
of musical phrases. The allocation is entirely based 
on a measure of the UNSUITABILITY of the 
current phrase for each potential instrument that 
could play it. The instrument with the least 
UNSUITABILITY 'wins' the phrase. 
 
Our aim is to set up some sensible measure of the 
difficulty of a given phrase. In order to do so, we 
separate the measure of the phrase difficulty from 
notions of character matching and instrument 
exposure within the piece. 
  
UNSUITABILITY= SOMEFUNCTION 
(FATIGUE, OUTOFCHARACTER, 
OVEREXPOSURE) 
 
For our purposes, let SOMEFUNCTION be a linear 
weighted sum. Then UNSUITABILITY equals 
 
WF* FATIGUE + WC*OUTOFCHARACTER + 
WE*OVEREXPOSURE. 
 
where for normalisation the weights WF, WC and 
WE sum to 1.0, and FATIGUE, 
OUTORCHARACTER and OVEREXPOSURE 
are all functions of a given instrument, the current 
phrase to be allocated, and all previously allocated 
phrases,  taking value from 0.0 to 1.0. 



   FATIGUE measures how difficult a given phrase 
is to play on the instrument in terms of physical 
technique required and cumulative tiredness of the 
performer as they play. It might also be called 
CANITBEPLAYED? It depends on what that 
instrument has been previously allocated to play 
over the course of the piece (the player may already 
be tired before they play this new phrase). The 
function depends on the instrument to be tested 
only. 
   OUTOFCHARACTER is a measure of how 
suitable a given phrase is to a given instrument. 
IOS [10] allows a composer to specify particular 
phrase characteristics to map to given instruments. 
Alternatively, there might be a connectionist model 
[15] to map particular phrases to given instruments 
based on a long training period over examples in 
the literature. This function only depends on the 
current phrase, not previous allocations.   
   OVEREXPOSURE is a measure of how much a 
given instrument has been used already, and in the 
extreme case, whether it is available at all at that 
moment in time according to the design of the 
piece (the orchestrator module may assign such 
restrictions itself before it begins to try to allocate 
phrases to instruments). Some kind of statistical 
scheme would be the most likely candidate for the 
OVEREXPOSURE function. This function 
depends on all previous allocations over all 
instruments. 
   Conversely, we could measure suitability as a 
combination of NOFATIGUE, CHARACTER, 
UNDEREXPOSURE. 
   In the following, CW = EW = 0.0, and FW = 1.0. 
It is not that a general orchestrator module would 
not find a character measure important, or would 
not consider how much a particular instrument has 
been heard, just that herein we concern ourselves 
specifically with FATIGUE. For a more general 
orchestrator module, the UNSUITABILITY 
measure depends on the instrument, and for strings 
might weight fatigue lower than exposure, but for 
woodwind, rate fatigue a higher concern. 

2.2 Assumptions of the orchestrator 
module 

It is thought wise to make a list of some of the 
many assumptions that the model presented here 
takes. 
 
• The orchestrator holds no psychoacoustic data 

on such topics as masking and loudness curves, 
and cannot confirm the likely audio output of 
players realising a score. The orchestrator 

cannot test the balance of instruments at a 
given time. 

• All dynamic indications are on an absolute 
dynamic scale. Human instrumentalists will 
vary their interpretation of dynamic markings 
relative to the orchestral forces playing at the 
time, and their pitch within the register of their 
instruments.  

• The psychology of music is not a solved 
subject area, so we cannot assume 
understanding of the mental state a performer 
will be in after viewing a given piece of music! 

• The allocation of a given phrase is independent 
of any other phrase. There is no consideration 
of simultaneity. There will be no grouping of 
instruments or seeking of homogenity of tone 
or particular texture at a particular point. 

• The instrumentalists act as soloists. So two 
flutes would be independent instruments, or 
one instrument receiving exactly the same 
material. There is no attempt to sustain a long 
note by staggering entries of two flutes, say. 

• Phrases and Instruments are monophonic  
• Pitch is 12 tone equal temperament 
• Pitch does not vary over a given note (no 

portamento and glissando) 
• Rests during a phrase do not allow any 

recovery (with corollary- the cost of a phrase is 
independent of the fatigue level before you 
began the phrase) 

• Ornamentation and articulation are not 
modelled 

• Stresses naturally given by players by strength 
of each beat in a given bar are not taken into 
account.  

• The fatigue measure is currently most 
applicable to woodwind, brass, and voices, that 
is, where breath is the deciding factor. The 
possibility of circular breathing is ignored.    

2.3 Timing information for a piece 
The basis of the piece has already been composed, 
or extracted by some analysis; the list of phrases. 
We require timing information in seconds. 
Estimates of how long a player can blow must be 
made in seconds, not beats! We ignore time 
signatures by ignoring the position of a note within 
a bar (ignoring any stress a player would place on a 
particular beat), and assume tempo changes are 
already known and taken account of in the timings. 
It is envisaged that given timings in beats, plus the 
list of tempo changes, a pre-processing step turns 
all timing information into seconds. 



2.4 Definitions of basic musical objects 
 
A dynamic is in the range 1 to 8, where 1 is ppp 
and 8 is fff. 
A dynamic curve is a continuous function of 
dynamic over time. The dynamic curves used 
herein are dynamic keyframe sequences over time 
with linear interpolation. 
 
Example A crescendo from ppp to mp followed by 
a steady dynamic over 10 seconds might be 
represented by keyframes {(0,1), (5,4),  (10,4)} 
 
A note event has the attributes of: pitch, taking 
values 0-127 equivalent to the MIDI pitch scale  
and duration in seconds. 
 
 A phrase consists of a map over time of non-
intersecting note events and a dynamic curve 
defined over the same span as the map of notes. 
The condition of non-intersection forces 
monophonicity of phrases.   

2.5 Instruments 
Each instrument is given particular values of the 
following parameters: 

Table 1 Instrument parameters for the 
FATIGUE cost function 

Shorthand Parameter Type 
LBRANGE Lower bound of 

instrument range 
MIDI PITCH 
(0-127) 

UBRANGE Upper bound of 
instrument range 

MIDI PITCH 

LBCOMF Lower bound of 
comfortable 
register 

MIDI PITCH 

UBCOMF Upper bound of 
comfortable 
register 

MIDI PITCH 

MAXLEAP Maximum 
comfortable leap 

MIDI PITCH 

MINDUR Minimum 
comfortable 
duration 

TIME in 
seconds 

MAXPLAY Maximum phrase 
length playable  

TIME 

RECRATE Recovery rate 
during rests 

positive real 

 
As well as the standard range of a professional 
player, we model a 'comfortable range' being that 
portion of the instrument where the player is most 
at ease in playing. The maximum comfortable leap 

and minimum duration give a measure of the agility 
and speed capabilities of the instrument. The 
MAXPLAY parameter measures how long a 
performer can play for on the given instrument with 
a single sustained tone at average dynamic (mf). It 
is highly pertinent to breathing. For percussive 
instruments which require no energy to sustain, or 
string players who could continually bow for half 
an hour, this parameter is interpreted as the longest 
the orchestrator wants to let an instrument play a 
succession of even pulses above the MINDUR rate.   
 
Example  a piccolo 
LBRANGE=74, UBRANGE=108 
LBCOMF=76, UBCOMF=96 
MAXLEAP=17, MINDUR=0.05,  
MAXPLAY=10.0, RECRATE=1.0 
 
The piccolo is an agile instrument, and the small 
body means it is not too tiring to play (though it is a 
tricky instrument to control). The bottom Eb and D 
are very tough to play whereas the E is easy. The 
real difficulties of the instrument occur going in 
cold for high notes. The model does not cover the 
case that leaps up are easier than the equivalent 
leap down.  

2.6 Defining the FATIGUE cost function 

2.6.1 FOVERP (Fatigue over a phrase) cost 
function  

FOVERP = 

MAXPLAY
SPEEDCOSTyLEAPCOSTxDURCOSTw *** ++

 
where w, x, y are weights. DURCOST(duration 
cost) is given by the formula  

∑
=

N

i

ipitchregisterfniDYNINT
1

))((*)(  

 
where DYNINT(i)= 

∫
)(

)(

))(),((*))((
iduration

istart

dtipitchtdcinstrdynfntdcdynfn  

 
LEAPCOST= 

∑
−

=

−+
1

1

)))()1(((
N

i

ipitchipitchabsleapfn  

 
SPEEDCOST= 

∑
=

N

i

idurationtfnspeed
1

))((cos  



The summations are over the N notes of the phrase.  
The rests in a phrase will be naturally ignored. 
Functions of i are properties of the notes of the 
phrase- pitch(i), start(i) and duration(i) are 
respectively the pitch, start time in seconds and 
duration in seconds of the ith note. abs is the 
absolute value of the integer argument. dc(t) is the 
value of the dynamic curve at time t and the 
functions dynfn, instrdynfn, registerfn, leapfn and 
speedchangefn are given concrete forms below 
utilising the instrument data from table 1. 
 
 dynfn(dc(t))= 
1.0 if dc(t) e [4.0, 5.0] or otherwise 

5.3
))5.4)(((*

0.1
−

+
tvedynamiccurabsVC

 

The assumption is that a very soft dynamic is the 
same effort as a very loud one. VC is a constant, 
taken as 1.0 for testing. The DURCOST measure is 
integrating dynamic effort over the durations of all 
notes. 
 
instrdynfn(d,p)= 1.0 for all d, p (constant function) 
 
This assumes there is no difference in dynamic 
difficulty at different points of a range. This is not 
true for a horn for example (mf only is practicable 
at the extreme top of the range) but is a helpful 
simplification. The summand DYNINT(i) is now 
independent of the instrument and only needs to be 
calculated once for each phrase. 
 
registerfn(p)=   
1.0 if p e [LBCOMF, UBCOMF] 
1.0+ (LBCOMF-p)/(LBCOMF-LBRANGE)  
if p e [LBRANGE, LBCOMF) 
1.0+ (p-UBCOMF)/(UBRANGE-UBCOMF)  
if p e (UBCOMF, UBRANGE] 
infinity if p<LBRANGE or p> UBRANGE 
 
registerfn(p) is linear outside the comfortable range 
to the limits of the instrument range.      
 
leapfn(p)=  0.0 if p ≤ MAXLEAP otherwise 

MAXLEAPLBRANGEUBRANGE
MAXLEAPp

−−
−

−0.1  

 
There is no need to check whether a leap stays in 
range for registerfn already deals with this case. 
 
speedchangefn(d) =  
0.0    if d≥ MINDUR 
1.0- d / MINDUR  otherwise 

Example  contrasting two phrases for piccolo  
(Weights w = x = y = 1.0, functions as above) 

 
These two phrases are marked with the the value of 
FOVERP. The values are either side of the 
MAXPLAY cutoff of possibility (10.0), so 
according to the cost function, the top phrase is 
unplayable, whereas the bottom one is. We can see 
quickly why the higher phrase is assessed with the 
higher FOVERP score, for it is at dynamic ppp at 
the very top of the piccolo's range. A piccolo player 
would probably demonstrate that this measure does 
not correlate to real life by playing the top phrase to 
us! However, the cost function is hardly precisely 
tuned at the moment (see the further work section). 
The weights allow scaling to set up the cost 
function to the composer's specification, and there 
is no law requiring us to use MAXPLAY as a strict 
cutoff! 
 
FOVERP returns infinity where a phrase is 
definitely impossible on the instrument (perhaps 
out of range). FOVERP is normalised with respect 
to MAXPLAY. Values below 1.0 have not 
exhausted the player beyond their capabilities. 

2.6.2 FATIGUE after allocation of a new 
phrase 

The FATIGUE function used by the orchestrator 
function must take account of all phrases 
previously allocated to an instrument. So for a 
given phrase P, FATIGUE(P)= 
 

∑
<

−
PQ MAXPLAY

RECRATERECTIME
QFOVERP

*
)(  

 
The summand is over all phrases earlier in time 
than phrase Q. RECTIME (recovery time) is the 
time in seconds that the instrument has not been 
playing since the beginning of the piece up to the 
beginning of phrase P. There are two provisos. The 
first is that FATIGUE(P) returns infinity if the 
allocation of P would intersect with any previously 
allocated phrase Q. The second is that 
FATIGUE(P) returns infinity if the allocation of P 



to the instrument would mean that any phrase later 
than P now becomes over-fatiguing. This proviso 
only matters if phrases are being allocated free of 
linear time (otherwise, we already know phrase P 
to be allocated cannot occur before an earlier 
allocated phrase).Checks for FATIGUE are easy, 
since the FOVERP measure can be made once only 
for a given phrase on the instrument and then 
stored. 
 

3 The Model in Practice 

3.1 Search Procedures 
I use terms from the work of Charles Ames ([2]). 
The orchestration process as given here always 
critically depends on the phrase list order.  
A comparative search is not practical. If each 
phrase could only be allocated to two possible 
instruments on average, the number of possibilities 
over N phrases is 2N, which will become too large 
for large N. 
   If all phrases must be allocated exactly as in the 
list, a constrained search with backtracking can be 
used to hunt through the allocations to find a 
solution. We might have to ignore the best fit 
instruments for a given phrase at certain stages to 
avoid over-fatiguing particular players.   
   Everything becomes more complicated if the 
orchestrator can make compositional decisions. If a 
phrase cannot be allocated to any instrument, we 
might allow the module to split the recalcitrant 
phrase in half, or even to make a split based on the 
amount a given phrase instruments can play before 
they become over fatigued. Further, in an 
orchestration, the orchestrator may assign the same 
phrase multiple times to a pertinent instrumental 
combination. 

3.2 Implementation  
A C++ program was constructed to test the cost 
function. This program also included a composition 
module for the phrase list. The output was a MIDI 
file which was imported into the score editor 
Sibelius. Automatic orchestration using the fatigue 
cost function alone was used to produce Palette 3 
of the author's 24 Palettes. The score can be 
viewed on the author's web site. It is not 
reproduced here for reasons of space, and since the 
FATIGUE measure will shows itself over the long 
term. 

3.3 Further work 
The cost function here is drastically flawed as a 
model of real instruments and performers, but is the 
beginning of what one believes is a laudable  study. 
It is obvious that an empirical survey of 
instrumentalists and consultation with orchestrators 
would be a natural next step. Measurement of 
exactly how long instrumentalists can play at a 
given dynamic level on a given note, articulation 
and rate of pulsation without exhaustion would be 
extremely pertinent, as well as difficulties of 
particular changes of notes, dealing separately with  
leaps up and down between any two tones. Real 
orchestrations are a natural source of knowledge. 
   The instrument model here is weak. A hierarchy 
of classes could be introduced to cope with 
different instrumental families and specific 
instruments. Whilst each instrument would present 
a common interface to the orchestrator, they could 
calculate cost of phrases in an independent way. 
This would make it easier to model specific 
articulations like sul ponticello. The breaks on a 
flute occur between C#5 and D5, C#6 and D6 etc. 
The leap cost for a flute would ideally take this 
kind of transition into account. The model also 
assumes that leaps up are the same difficulty as an 
equivalent leap down, another problem that is 
solved by costs for each possible leap. The work of 
Sayegh [13] is extremely pertinent to the 
production of music for stringed instruments lying 
comfortably on the instrument. 
   The time and effort required for non-sounding 
actions like adding mutes, switching harp pedals or 
re-tuning timpani would also be factored into the 
cost function calculation, perhaps by adding extra 
time onto the front of a phrase as preparation time 
within the instrument's cost calculation. However, 
if we find ourselves considering time for page turns 
we might be taking this scheme too far! 
   There is much investigation to be done into 
different definitions for dynfn et al  in the general 
FOVERP measure. 
   The model allows the possibility of altering the 
phrases themselves in difficulty. This is tantamount 
in some cases to recomposing. One might envisage 
a phrase being handed back to the composer 
module to redo in a way compatible with the 
composition, perhaps to a different dynamic or a 
less pointilistic pitch distribution (whilst preserving 
pitch classes). If the phrase cannot be changed in a 
consistent manner, then we get into difficulty, for 
removing the phrase from the orchestration 
destroys the integrity of the piece! 



   The orchestration process can be used by the 
composed module to do work for it- by deliberately 
composing difficult material, the composer lets the 
orchestrator break up that material into more likely 
units.  
   There are many factors to take into account, and 
the cost function would never become perfect, but 
at least we would be thinking of the performer 
more than without it.  

3.4 Conclusions  
The wise composer will be aware of the limits of 
the technique of the professional performer, and the 
wise algorithmic composing program can also 
attempt to embody such knowledge. The amount of 
knowledge associated with orchestration is very 
large, considering the great number of acoustic 
instruments, particularly through world cultures! 
This paper only describes one aspect of setting up 
an independent orchestrator module. As long as 
musical material conforms to the input 
specification, the orchestrator might be acting on 
novel algorithmically composed material, 
attempting to set a piano piece for full orchestra, 
reduce a piece for full orchestra to a piano piece or 
rework a piece for different instrumental forces. 
 
The reader may believe that this paper is only 
relevant to the case of automatic composition for 
acoustic instruments. However, the material could 
be adapted to 'humanising' synthesised instruments. 
Finally, another curious application of this material 
might be to create algorithmic composition for 
amateur musicians within a certain difficulty level! 

3.5 Acknowledgements 
Many thanks to Gordon Davies for his observations 
and a tutorial on woodwind and brass instruments. 
 
References 
 
[1] Charles Ames,  Stylistic Automata in Gradient, 
Computer Music Journal, Vol 7, No 4, 1983, pp 
45-56 
 
[2] Charles Ames,  Automated Composition in 
Retrospect 1956-1986 Leonardo, Vol 20, No 2, 
1987, pp 169-186 
 
[3] Gerard Assayag et al, Computer Assisted 
Composition at IRCAM: From PatchWork to 
OpenMusic Computer Music Journal, Vol 23, No 
3, 1999, pp 59-72 
 

[4] Dennis Baggi (Ed), Readings in Computer 
Generated Music,  IEEE Computer Soc Press, 1992 
 
[5] Lejaren Hiller, Composing With Computers, A 
Progress Report , in [12] 
 
[6] Gottfried Michael Koenig, Aesthetic Integration 
of Computer-Composed Scores , in [12] 
 
[7] O Laske Compositional Theory in Koenig's 
Project One and Project Two, in [12]  
 
[8] D. Gareth Loy, Connectionism and 
Musiconomy in [15] 
 
[9] Kenneth McAlpine, Eduardo Miranda and 
Stuart Hoggar,  Making Music with Algorithms: A 
Case Study System, Computer Music Journal, Vol 
23, No 2, 1999 
 
[10] Curtis Roads, Interactive Orchestration Based 
on Score Analysis, Proceedings of the 1982 
International Computer Music Conference 1983, 
pp 703-717 
 
[11] Curtis Roads, The Computer Music Tutorial, 
MIT Press, 1995 
 
[12] Curtis Roads (ed), The Music Machine, MIT 
Press, 1989 
 
[13] Samir I Sayegh, Fingering for String 
Instruments with the Optimum Path Paradigm, in 
[15]  
 
[14] Schwanauer and Levitt (eds),  Machine 
Models of Music, MIT Press, 1993 
 
[15] Todd, Peter M and Loy, D.Gareth (eds),  
Music and Connectionism, MIT Press,1991 
 
[16] Hughes Vinet. Recent Research and 
Development at IRCAM Computer Music Journal, 
Vol 23, No 3, 1999, pp 9-17 
 


