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ABSTRACT

Co-analysed audio and visual features can provide orig-
inal concatenative synthesis effects in either or both modal-
ities. This paper describes experiments in establishing au-
diovisual databases tagged by both audio and visual fea-
tures, then creating new output streams by feature match-
ing with a given input sequence; some intriguing effects
are possible. Results are grounded in vectors of frame-
wise data rather than higher level object recognition, but
multi-modal processing extensions are discussed.

1. INTRODUCTION

Concatenative sound synthesis [7, 9] works with respect
to large corpora of analysis-data-tagged sound segments,
which can be recombined into novel outputs based ! on
target feature data streams. In most implementations, the
database is pre-analysed, though it may also be formed
on the fly; in either case, the target data can be from live
input. Matches between the database and target are output
after search. Questions of the efficiency of this search and
the synthesis quality with respect to particular features and
source databases are open research topics in current work.

Audio features can be leveraged for video analysis and
cueing, and multimodal event databases formed on-the-
fly during live performance [2]. The basis of the sCrAm-
BIEd?HaCkZ! project? is audio feature analysis on eighth
note segments of a beat box audio signal, which are matched
(by audio alone) against a database also containing video
tags to pop videos. Video features can also be leveraged to
extend audio analysis and cueing [6]. This is most famil-
iar in current projects into automatic speech recognition,
where an additional video component is applied for lip
reading to disambiguate cases.

This paper describes an exploratory study into the use
of simultaneous audio and visual features for data-driven
synthesis, from both technical and artistic perspectives.
There is some overlap with engineering studies into mul-
timodal data handling. For instance, Smaragdis and Casey

T might use the verb ‘databased” in this instance!

2 http://www.popmodernism.org/scrambledhackz/ This website has
an excellent downloadable movie explaining the technical basis of the
work.

3Tt should be noted that whilst such approaches can improve auto-
matic speech recognition, they are not a necessary solution to the prob-
lem — for the blind are perfectly good language users, yet do not access
any visual cues. Speech recognition is ultimately far more limited by
contextual knowledge.

[8] combine audio spectral amplitudes and image pixel
intensity data into a single unified high-dimensional au-
diovisual feature vector, analysing this through Indepen-
dent Component Analysis. In a recent study, Monaci et al.
[4] construct multimodal dictionaries of learnt basis func-
tions. Both these papers tend to assume that audiovisual
correlation is present in the source material, which may
not be the case for some artistic ventures. The features
taken in this paper are perhaps more perceptually relevant
than intensity value streams, though with a large reduc-
tion in dimensionality; yet they are still not at the level of
semantic objects, and this is discussed at the close.

It should also be granted that a unified audiovisual view
to features is implicit in the work of some current live
audiovisual acts (klipp av, chdh, Coldcut’s conception of
audiovisual plug-ins for the FreeFrame plug-in format*),
who may have artistic reasons to seek a greater equiva-
lence or information transfer between modalities.

2. MODEL

Frame-wise and event-wise segmentation have been highly
promoted in recent years (i.e. in music information re-
trieval) for operations on pure audio signals. The former
is still the dominant trend, and whilst individual frames
are typically at the level of FFT windows (10-20 msec),
larger-scale processing suitable for auditory objects in-
volves multiple frames at once; for instance, Casey and
Slaney [1] promote the term shingle to describe the com-
bination of M features per frame over the past N frames in
larger M*N length feature vectors associated with a given
frame.

In the case of this paper, each frame provides both au-
dio and visual features. The 44100 Hz sampling rate used
in this project provides an advantage related to its heritage
in digital video - 30fps movie material approximates the
audiovisual integration clock rate (30 msec period [5]),
and corresponds to exactly 1470 samples. Blocks of 1470
samples (zero-padded to 2048 FFT blocks for spectral fea-
ture calculation) are taken for each video frame.

Whilst the joint feature vector for a frame is simply the
concatenation of the audio and visual feature vectors [6],
it is necessary to keep track of which feature is on which
dimension so as to have independent weight control over
their contribution to matching. It is also at the matching

4 http://freeframe.sourceforge.net/



source movie

audio frames

audio visual

location tags

database

autput maovie

Figure 1. Batch processing view of audiovisual concate-
native synthesis framework. The non-realtime case is ex-
hibited here: the target (and also the rendering database
via appropriate buffering) could also be the result of anal-
ysis on a live input stream.

stage that multiple frames are involved, by extending the
distance calculation.

Image size is indirectly involved in the calculation of
video features. For consistent output, the database just
consists of movies at a common size (420x272 was a stan-
dard used). The target (input) sequence does not have to
have the same size since the features are abstract descrip-
tors of the motion or object content of image frames, in-
dependent of size through appropriate normalisation.

2.1. Audio and Visual Features

Five each of audio and video features were explored; more
could easily be added, but a reasonably small number of
features already empowers complex effects (for example,
Bob Sturm’s MATConcat uses six main (audio) features
[9]). The added complication of audio and visual features
gives plenty of scope for compositional effects to be dis-
cussed.

Most of the features are defined for a single frame, but
change detection features were defined between frames
for both audio and visual data, based on pointwise log
differences. Tables 1 and 2 give the audio and visual fea-
tures respectively — the features are (somewhat) analogous
in pairs, though those of the images may deal with 2-
dimensional spatial frequency rather than 1-dimensional

Feature Implementation
specdropoff | log of the bin frequency for the 85% spec-
tral power point
N2
logpower log (le%) x (exp(1) — 1) + 1)
maxf0 log frequency for the peak (2048 point)
FFT bin between bins 2-60
zcr Zero crossing rate: negative to positive
crossings per frame
onset change detector (see text)
Table 1. Table of Audio Features
Feature Implementation
var variance of the image
brightness | log of the average intensity of image pixels
maxf0 log frequency for the peak 2-dimensional

FFT bin between bins 2-60 by 2-60
edge edge detection count (see text)
imagediff | log difference pointwise between frames

Table 2. Table of Visual Features

spectra.

Before processing the image frames were converted to
floating point descriptions in two matrix forms, the first
retaining RGB channel separation in a three-dimensional
matrix, and the second an average amplitude greyscale
two dimensional image. The latter representation was used
for the 2-D Fourier transform and edge detection.

Where the tables are sufficient for reconstruction I do
not describe feature definitions in the text. For the au-
dio, the onset detector is a variant of the family of band-
wise log energy change detectors founded in the work of
Anssi Klapuri (see [2] for further links). 96 subbands
in the spectrum were taken, with linear spacing (every
band) below 1000 Hz, and geometrically spaced bands
over 1000Hz up to 11025; a single band encapsulated the
top half of the spectrum. Subbands were formed by sum-
ming the amplitude spectrum for appropriate indices, then
the log power was taken for that subband. Finally, only
positive changes from the previous frame were summed
as contributing to an attack percept.

A spatial zero crossing count was effected by edge de-
tection [3, p. 175] using the Laplacian of Gaussian fil-
ter kernel, which finds zeroes of the second derivative of
the smoothed signal, where the smoothing scale is deter-
mined by the parameter o of a 2-dimensional Gaussian.
The image filter coefficients are formed by the analytical
solution:

2 2 _9 (2 2
V3G, = wizlaexp <(:z:+y)> 1
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For 0 = 1 a 9 by 9 pixel kernel was calculated. 2-D
convolution followed by a count of values close to zero
(within +- 0.05) gave the edge detection count.

Figure 2 show the ten feature trails across 5 seconds of



Al -1

0 0
0 0 50 100 150
1 1

-
) MWW ol
0 0
10 50 100 150 10 50 100 150
0 0

0 5 150 0 50 100 150

1

0.5 0,; = N L~
OKM \/\MLS M\M\J\/\A,

0

0

; 0 100 150 10 50 100 150
N LL!;L L L’LMHN NLNNLM= M ] J\AN\IWW‘/W\JLW
0 0
0 50 100 150 0 50 100 150

Figure 2. View of ten features across 150 frames (5 sec-
onds) of a particular source; audio features on the left in
the order top to bottom given by table 1, visual features on
the right following table 2. Some correlations can be seen
against the profiles — audio features appear noisier due to
the greater time resolution of audio data, regardless of the
framewise nature of calculation.

audiovisual source material. Some correlations between
trails amongst audio and visual features (but not cross-
modally) are seen. In the video the step functions are due
to overt scene changes — these features are not discrim-
inatory for semantic objects (as discussed at the close of
this paper). Correlation coefficients for this situation show
large correlations (|r| > 0.5) between the first and fourth
(r = 0.77) and second and fifth (r = 0.53) audio features,
amongst the first three visual features (all » > 0.9), and
between the first and fourth (r = —0.6896) and third and
fourth (r = —0.7025) visual features; but not between
mixed audio and visual features. It should be made clear,
however, that for other feature sets circumstances vary,
and there is no evidence in general for a priori statisti-
cal dependence amongst the features. Such audiovisual
correlation is discussed in greater detail below.

Ahead of feature matching, feature normalisation was
carried out to obtain an equivalence of feature values (for
otherwise, the ZCR count could be disproportionately in-
fluential compared to the log power, for instance). Nor-
malisation by maxima and minima to the range [0,1] was
the method followed in practice (the feature trails were
empirically checked to make sure they did not produce
significant outliers that would skew this mapping). Whilst
statistical normalisation was investigated (correction to zero-
mean and a std deviation of 1) the one-tailed or multi-
peaked nature of the distributions on most parameters made
this problematic.

2.2. Match procedure

Matching iterates through the frames of the target movie;
each is matched to the best fit (with respect to conditions

below) from the database. Following [7, p. 152], a weighted
Euclidean distance metric is used for an extended target
cost:

k
cost of frame k = Z Z (a;(@f —45)*

i=k—p j—features

Where x; is the jth feature of frame ¢ in the database, y
is the target feature set, and the «; are the feature-wise
weights. The ‘shingling’ is brought in at this point by
variable p, the number of past frames to be considered in
matching cost calculations.

Concatenation cost was zero; the default was thus an
implicit trust in the extended multi-frame target cost as
automatically finding appropriate matches in progression
through the (usually reasonably continuous) feature vec-
tors of the (self-consistent) target.

A brute force linear search was used for prototyping.
Indeed, with the involvement of weights, it is hard to see
what else could be done — new weights require recalcula-
tion> of a kD-tree or Ball-tree search or locality sensitive
hashing map for approximate nearest neighbours [1]. The
cost of feature calculation in the first place (particularly
for images) is much greater than a linear search for best
matches on the quantity of material considered.

3. IMPLEMENTATION

The prototype system was implemented in MATLAB, us-
ing Quicktime Pro to segment Quicktime movies into 30
fps JPEG sequences, and separate .wav audio files, suit-
able for easy loading and processing with MATLAB. Out-
put from MATLAB were also JPEG image sequences and
an audio file; these were re-combined again in Quicktime.

Because of the multiple stages in the process, and the
cost of calculation (particularly for image features) the im-
plementation was coded with independent rendering stages
to promote quick experimentation. For instance, if a single
new feature was added, this could be calculated for exist-
ing movies then imported at the synthesis stage, without
affecting prior feature calculations. A subset of features
and database material could always be used for rendering
purposes.

4. AUDIOVISUAL EXPERIMENTS

Various demonstrations of audiovisual concatenative syn-
thesis effects were constructed, and some brief notes on
audiovisual effects obtained are now detailed. The source
databases in the main consisted of downloaded movie trail-
ers; cross-synthesis based on the latest releases breaches
copyright if publicly released, but is fair use for research
purposes, and definitely in the spirit of the alternative scratch
video scene [2].

5 To see this, imagine a weight tending to zero; this corresponds in the
limit to projecting, such that widely divergent points on one dimension
become packed closer together in the ensuing lower dimensional space.



4.1. Audio only

Standard audio concatenative synthesis effects are possi-
ble — but the original video frames associated with particu-
lar sound grains come along for free. This effect has been
carried out with rhythmic pop video material with explicit
eighth note segments in the sCrAmBIEd?HaCkZ! project.
Rather than reproduce that, more abstract territory posited
on shorter granular synthesis timescales (constructed from
the 33 msec grains/frames) can be exploited.

4.2. Visual only

Here the audio is dragged along, and the matching pro-
ceeds only on the basis of visual feature analysis. The in-
teresting byproduct is that the slower event rate of visual
material (mediated in part by a slower scene/shot change
rate) tends to promote the preservation of longer auditory
segments; the output is less finely granulated, and this
without the imposition of concatenation cost.

An abstract form of audio processing is possible by
this mechanism, somewhat reminiscent of the use of com-
plex numbers in equation solutions or hidden variables in
physics: if the visual part is discarded, audio output can
be generated indirectly from associated video content, the
visual part of which is only utilised for processing, and
never viewed!

4.3. Audiovisual/visualaudio

The choice of arbitrary weights amongst the features al-
lows degrees of combination of audio and visual param-
eters in determining output. The more features are in-
volved, the more difficult it is to predict the outcome. In-
deed, some of the clearest output examples were generated
with a low number of salient features.

An interesting twist is to vary the weights over time
during rendering — this allows the matching to begin based
on audio, interpolate through an audiovisual blend, and
end up with entirely visual feature cued output.

4.4. Audiovisual correlations

The degree of existing correlation between audio and fea-
tures depends on the nature of the source data. In the case
of movie trailers used for the test data, correlation is in-
termediate — voiceovers and nondiagetic soundtrack mu-
sic are uncorrelated (except in narrative content and emo-
tional contingency) but sound effects are related for some
audiovisual objects. Varying targets and database content
vary the correlative factors. Just as for the features de-
scribed in figure 2, it might be plausible to analyse cor-
relation coefficients within and between audio and visual
features ahead of rendering, to seek out a particular state
of audiovisual correlation (where enabled by the situation)
and set cost calculation weights appropriately.

5. AUDIOVISUAL OBJECT RECOGNITION

This paper has described prototyping of audiovisual con-
catenative synthesis from joint audiovisual feature vec-
tors, at the level of the multimodal integration clock — 30
Hz, or blocks of 1470 samples (zero-padded to 2048 FFT
blocks) at 44100Hz sampling rate.

One weakness of the current approach is the use of

lower level features, rather than higher level structure; though

a case can be made for the emergence of some higher level
features implicitly from the time variation of low-level
data. There are some critics that would not be content with
anything other than semantic object recognition (though
this can be less than well-defined). However, this pre-
liminary study was an attempt to investigate novel com-
positional effects, and concatenative synthesis at a rela-
tively low level remains an open area of exploration. Fu-
ture work can enter a vaster world yet, of audiovisual ob-
ject recognition, with higher level machine vision and lis-
tening processes for object identification running in both
modalities. ® Processes of data-driven material recombi-
nation founded on audiovisual analysis may have a very
productive future as both technical tools and engines of
novel aesthetic pursuit.
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6 Whilst the particular properties of audio and visual modalities
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