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ABSTRACT

Technology is described to track the tempo and phase of a
human drummer on an acoustic drum kit from analysis of
the audio signal alone. The beat induction algorithm com-
bines work by Laroche and Goto with original aspects,
and is efficient for real-time operation. The inferred clock
drives the scheduling of computer music which accompa-
nies and processes the drummer. An algorithmic improvi-
sation system entitled DrumTrack was built to exploit this
tracking, efficient enough to run on a single laptop.

1. INTRODUCTION

Causal real-time beat induction from a musical audio sig-
nal is no easy task, and the subject of many recent papers[5,
4, 3, 1]. In the basic approach authors examine the energy
signal using some form of exhaustive correlation search,
whether by the use of comb filter resonators[5], an effi-
cient cross correlation[4], or autocorrelation lags[1]. Whilst
this may model a low-level neuronal mechanism, higher
level knowledge about the signal is more rarely utilised.
Masataka Goto in his beat induction work[3], however,
has demonstrated some success in detecting certain fea-
tures of (popular) music such as kick and snare patterns
and chords and using these in rating the hypotheses of
beat tracking agents. It would seem intuitively plausi-
ble that musicians make use of learnt stylistically rele-
vant high-level features of music particularly in selecting
the correct phase hypothesis for tracking. Recent psycho-
logical evidence has suggested that there may be both a
low-level and a high-level beat induction facility consis-
tent with these approaches[6].

The DrumTrack project described in this paper attempted
to build a practical working system for the tracking of an
acoustic drum kit, where the human player could exert
control over the scheduling of computerised parts. This
necessitated not just the tracking of tempo but the accu-
rate determination of phase within a period, the arena of
beat induction. In order to overcome limitations on the
consistent determination of the phase found with correla-
tion models alone, the author was drawn to Goto’s ideas.
The resulting system synthesises work by Laroche[4] and
Goto[3] in a casual dynamic programming framework for
beat induction (section 2). In order to drive the computer

parts, a scheduler had to be built that could run from an
external clock (section 3). Finally, an improvisation sys-
tem is outlined (in section 4) which was premiered in a
real concert setting.

2. BEAT INDUCTION ALGORITHM

A concert-proof causal real-time algorithm was required
with accurate phase alignment. Whilst finding the cor-
rect tempo was relatively straight forward using a vari-
ety of beat induction models, and the efficient Laroche
model provided a natural starting point [4], energy sig-
nal correlational search methods alone were found insuf-
ficient to consistently determine the correct phase. To
overcome this problem, some higher level signal under-
standing adapted from work by Goto[3] was utilised to
spot kick and snare drum patterns, and a heuristic was
also introduced favouring cases where low frequency en-
ergy appears on the beat. This additional information was
reconciled within a causal version of Laroche’s dynamic
programming framework, the drum pattern and low fre-
quency information providing additional evidence to rank
(period, phase) hypothesis pairs.

Figure 1 outlines the stages in the DrumTrack beat in-
duction algorithm to be further detailed below.

2.1. Cross Correlation

Laroche provides a very efficient search procedure for (pe-
riod, phase) hypotheses[4]. A memory holds an energy
function of the last 3.4 seconds, which is calculated from
an FFT of the audio signal input. This energy flux is
searched by cross-correlation with impulse signals corre-
sponding to a given (period, phase) pair, as illustrated in
figure 2 for a quarternote impulse signal. Laroche sug-
gests even sixteenth note spacing for 16 multiplications; it
was found more robust in this project to use eighth notes
(with weighting 1.0 for onbeats and 0.5 for off) to avoid
any assumption of groove.

100 tempi are searched, from 90-190 bpm, with 20
phases tested per tempo. The highest scoring 10 tempi
pass through to the dynamic programming stage, with the
2 best phases and their 2 antiphases, giving up to four
phase hypotheses per tempo and thus 40 hypotheses in
total out of the initial 2000. The rationale for always



Figure 1. Overview of the beat induction algorithm

keeping the antiphases was that the pi-phase error was the
most prevalent problem, and maintaining both hypotheses
at this stage avoided such an error early in the assessment.

2.2. Detecting Drum Patterns

In a parallel step, the signal is searched for matches to
an archetypal 4/4 drum pattern. This necessitates signal
processing to detect kick and snare onsets, adapted from
Goto’s system[3, pp 162-3]; only differences are outlined
here. A snare detection function is calculated as the prod-
uct of values of the form1 + x for each subband of 9
FFT components, rather than Goto’s formx. This gives
a much more continuous function than Goto’s all or noth-
ing system where the failure of any subband to be a noise
component means a failure of snare detection. The bass
drum detection is not calculated by Goto’s more expensive
histogram method but by using Goto’s onset detection for-
mula (equation (2), p161) on the three FFT bins above the
zero bin. Sensible thresholds were found by examining
the maxima and mean of the detection functions for real
test signals.

Detected kick and snare signals are stored to a mem-
ory array of time resolution equal to the FFT hop size.
This array can be searched for matches to a given drum
pattern. Goto’s publications do not give the full details
of how he implements pattern matching for drum beats;
he appears to use a beat hypothesis to establish a quantis-
ing grid for detected kick and snare onsets which are then
matched against eight drum pattern templates (only two
such templates are given in his papers). In this project, the
choice was taken to search for matches without quantisa-
tion, though allowing some leeway on match location to
allow for the detection latency and FFT resolution. The

Figure 2. Cross correlation of an impulse signal repre-
senting a (period,phase) hypothesis with the source energy
signal

detection of a drum pattern would then provide evidence
of the necessary period and phase of a winning hypothe-
sis. Such a tactic demands a more exhaustive search; this
could still be achieved relatively efficiently.

The primary archetype is the classic 4/4 kick-snare-
kick-snare on-beat alternating pattern. It is represented
by weights such that the second kick is worth only 0.5
points whilst the other positions are all worth 1. A match
requires a score of at least 1.75, thus disregarding single
hits and the case of kicks on beat 1 and 3 which otherwise
acted as a confound.

Figure 2.3 provides pseudocode for the search proce-
dure. The reader is spared the modulo math to keep track
of the circular onsets buffer and the cases that account for
the type (kick or snare) of a starting onset. In the onsets
memory the beginning of a bar (and hence a drum pattern)
can begin in any position. The code is thus equipped to ex-
pect the archetype to appear in any of the four rotational
forms.

2.3. Low Frequency Evidence

Given a (period, phase) hypothesis the proportion of on to
off beat low frequency energy is assessed for the previous
four beats located according to the hypothesis. The low
frequency energy is calculated by summing the bottom
five FFT bins (bin frequency<=172Hz for the specific
FFT parameters in the implementation). To avoid inac-
curacies in FFT time resolution a seven point average is
taken around a given assessment frame position.

basscost= 1.0− scale factor∗ on-beats bass sum
off-beats bass sum

(1)

2.4. Dynamic Programming Step

Various sources of evidence must be reconciled in the dy-
namic programming step. Laroche’s original dynamic pro-



Figure 3. Pseudocode for drum pattern matching
now= current frame
for i= all starting onsets (where room for a later onset)
for j= all onsets later than i

consider i as first beat,
j as either second, third or fourth
(The spacing must be plausible and there are
various cases based on the type of the starting onset)
Rate the archetype match such that period is diff(i,j),
diff(i,j)/2 or diff(i,j)/3 respectively and phase is
given by (now-i) mod(tempo)
If rating best so far, store (period, phase) as best match

gramming scheme is not causal, so was adapted to calcu-
late a step at a time. Programming stept proceeds by
evaluating each of the 40 active hypothesesi with respect
to the following equation, for each of the 40 previous hy-
pothesesj from the last evaluation cycle.

costi(t) = αcostj(t−1)+score(i)+ trans(i, j)+evid(i)
(2)

The Greek letters in these equations refer to weighting
constants to be determined. In particular,α controls a
leaky integrator on path costs from previous dynamic pro-
gramming rounds. The score is the normalised score given
by the cross correlation, and is assumed to have a constant
of one; other constants are thus relative to this weight.

The transition cost is evaluated in a way similar to [4,
p230]; tempo transitions above 6.3bpm have a fixed asso-
ciated cost, and phase errors are scored by three times the
difference of predicted beat times (giving a maximum cost
3*0.33=1 for the tempo range considered).

trans(i, j) = βphaseerror(i, j) + γtempochange(i, j)
(3)

Finally, the evidence is incorporated:

evid(i) = δbasscost(i) + εpattern(i) (4)

A formula for the basscost was given in (1). The pattern
score derives from a further transition cost (equation 3) but
here from the current hypothesis to the period and phase
suggested by the best pattern match (section 2.2). Opti-
mal values of the constants were gained during trials and
by feedback from comparative evaluation of performance
with reference systems as detailed below.

2.5. Consistency check

The winning path (that with minimum cost) from the dy-
namic programming stage is not immediately accepted. A
consistency condition requires a winning hypothesis to be
selected over two iterations of the cost assessment. Be-
cause the phase is constantly updating, a further phase
transition calculation takes account of the time elapsed be-
tween dynamic programming steps. Demanding two con-
sistent results in a row is a compromise between the need
to be sure of a hypothesis before making any phase and

period shift, and the need to respond relatively quickly to
the human drummer who may choose to change their beat
at any time.

2.6. Implementation as a SuperCollider UGen

The beat induction algorithm is implemented as a Super-
Collider UGen in C. The UGen assumes 44100 Hz sam-
pling rate and 16 bit resolution, calculating a 1024 point
FFT with 512 sample overlap (frame rate 86.1328 per sec).
Dynamic programming rounds occur every 24 frames (0.28
seconds). The various computational loads are spread (amor-
tised) amongst 64 sample control periods. The UGen was
sufficiently efficient to run at 6% average CPU cost with-
out any noticeable peaks on a 400MHz G4 Powerbook.

2.7. Evaluation

The influence of different weighting constants on beat track-
ing performance was assessed with respect to two other
models from the literature. This gave feedback for (bi-
section) searches for appropriate parameter values for the
model. A drum kit source example of 1 minute duration
was prepared, combining a number of tempi and grooves
in roughly ten second segments with abrupt phase jumps
between them. 133 hand marked onsets constituted an
ideal solution and a strict tolerance for matches was taken
of 50mS.

A measure of longest continuous tracked segment as
used in some beat tracking evaluations[1, 3] was inap-
propriate; even a human response would be disrupted by
abrupt phase and tempo shifts, and this is exactly the sort
of musical situation the algorithm would have to respond
to in performance.

Two alternative evaluative criteria were explored. An
evaluation formula from[2] gave the first, combining matches
m, false positivesF+ and false negativesF−.

eval1=
m

m + F+ + F−
(5)

The second gave a score rating by iterating over the list
of algorithm generated beats. A false negative scored -1,
and a match scored 0 if isolated, or 1 if the following beat
also matched to the corresponding next hand marked beat.
This measure rewarded cumulative matches, but did not
overly penalise drop out at phase jumps.

The reference systems were the Scheirer model[5], and
a beat induction model kindly provided by Matthew Davies[1].
Neither of these is a practical real-time system, and both
run around 2.5 times slower than real-time on the same
computer used for testing the UGen’s efficiency above.
The Davies model provided a benchmark of the state of
the art that a realtime system was not expected to surpass.

Table 1 lists results. It is readily seen that the best
parameter settings combine the evidence and cross corre-
lation scores but disregard the leaky integration dynamic
programming. The consistency checks (section 2.5) are
better at adapting than the dynamic programming controls
over path consistency which showed too much lag. The



Table 1. Comparison of reference systems and Drum-
Track systems with the given parameters [α,β,γ,δ,ε]

algorithm eval1 m F++
F−

eval2

Davies 70.89 112 46 77=102-25
[0, 0, 0, 0.025, 0.1] 58.08 97 70 47=81-34
[0.3, 0, 0.1, 0, 0.1] 48.6 87 92 27=73-46
Scheirer 46.57 68 78 11=24-13
[0, 0, 0, 1.0, 0] 43.78 81 104 11= 63-52
[0, 0, 0, 0, 0] 36.979 71 121 -9=50-59

drum pattern matching was definitely required for good
performance however, as the cross correlation alone per-
formed worse than the Scheirer model. Performance was
not as good as the Davies non-realtime model, due to vari-
ous factors: the algorithm needed 3.4 seconds to initialise
and did not have a prior tempo distribution. This was to
equally favour faster tempi, a compositional choice which
allowed the drummer in practise to work with such rates.

3. SCHEDULING FROM A BEAT INDUCTION
CLOCK

For more complex rhythmic events which were to respect
the tracked beat, SuperCollider code described various al-
gorithmic agents. Some of these were algorithmic au-
dio cutters which could utilise the anticipated beat posi-
tions to pre-schedule recording of the input source. Oth-
ers were live synthesised machine drummers which would
be locked to the external induced clock. Both forms of
activity were supported by a scheduling system that pre-
arranged any events due to play during the next beat on
receipt of a beat tick from the UGen. In fact, due to the
unknown network latency between the SuperCollider lan-
guage application and the Server synthesiser, the preschedul-
ing also took into account a minimum latency argument
(of the order of 40 mS) so as to timestamp OSC messages
and guarantee synchronisation.

Scheduling was achieved by an inner while loop which
requested future events from client agents in small blocks
until enough were available to fill the time to be presched-
uled. Because the agents themselves often had to calculate
more than needed at a given time (perhaps because they
worked out their material by measures), the scheduler pro-
vided a queue to store any spare future events. All agents
were compatible with this evaluation on demand set-up
via a class hierarchy. Beat based scheduling covered long-
term events but locations were converted to seconds for
the next beat (where the tempo is known); this short-term
time based scheduling queue could always be cancelled
early on receipt of an unexpected premature beat signal
from the tracker (perhaps corresponding to an accelerando
or phase jump).

4. DRUMTRACK, AN IMPROVISATION SYSTEM
FOR HUMAN AND ARTIFICIAL MUSICIANS

UGen development was targeted towards the production
of a live improvisation system combining a human drum-
mer with algorithmic drummers, called DrumTrack. Cer-
tain decisions taken in the programming of the beat induc-
tion algorithm betray compositional decisions, such as the
90-190 tempo range without mid biased tempo prior that
supports drum and bass style 160bpm+ drumming. As-
sumptions of 4/4 eased the pattern matching task, and the
handling characteristics at phase transitions were revised
to fit feedback from the performer .

Ultimately, aesthetic considerations were considered along-
side engineering ones in balancing the final tracker for
performance. However, evaluation demonstrated compet-
itive performance by the tracking software for its domain.
A very efficient implementation was necessary to run syn-
thesis and algorithmic agents on the same machine as the
beat tracker, and the appropriate scheduling mechanisms
were in place to support human drummer controlled algo-
rithmic beats.

This beat induction project has shown the benefits of
phase information provided by drum pattern matching. Work
is underway on a combining a real-time port of the Davies
autocorrelation model with drum pattern based phase align-
ment decisions as a future beat tracking solution; however,
the system as described in the paper was sufficient to fin-
ish the improvisation system.

DrumTrack was premiered in a concert on Feb 21st,
2005, with Dave Ellis on drums.
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