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ABSTRACT

A modular system for event analysis is described which utilises
psychoacoustically motivated onset detection to segment a mu-
sical audio signal. The target events have duration above the
grain level in the 100-500mS range. Captured events are further
analysed for features of pitch, integrated loudness and percep-
tual attack time. As a pragmatic approach to polyphonic audio,
heuristics are specified to select and reject events meeting certain
criteria based in statistical moments of instantaneous loudness
designed to eradicate double hits and other unbalanced sound
events. This system has been applied in both non-realtime com-
position within the MATLAB environment, and in a real-time
form for interactive music via extension UGens and classes for
SuperCollider.

Keywords: Event Segmentation, Onset Detection, Psychoa-
coustic Feature Extraction

1. INTRODUCTION

Event detection and analysis has exciting applications in compo-
sition, both in the non-realtime (NRT) case where a database of
sound events can be automatically generated to form the source
material [21, 23, 9], and in the realtime case where information
is extracted on-the-fly [4, 2].

The pertinent time scale of the events sought in this paper has
been called thesound object[19], continuation[27] andnote/phone
[21]. Such rhythmic rate (1-15Hz) events, typically of duration
70-500mS, are a step up from Roads’ standard grain durations of
10-100mS, in that they should allow a true temporal integration
of their energy rather than an impulse-like percept.

It would be most useful to extract events perceived as funda-
mental units by a human listener, and so, psychoacoustic features
will inform the detection functions. Their percept as singular en-
tities may depend on stable pitch and timbre percepts and a loud-
ness envelope of natural shape. Slow modulations in frequency
(vibrato) or amplitude (tremolo), however, may be factored out
as event boundary cues [21].

As Scheirer has noted[22] a human observer may understand
a signal without an explicit segmentation. Whilst marking the
presence of perceptually detectable events would be compatible
with this view, the physical extraction and reuse of events is a
novel application of technology beyond traditional auditory cog-
nition. There is no guarantee that a perfect solution exists; the
best segmentation against which to test this might be defined
as the compromise selected by a human user of a sound edit-
ing program. A monophonic source should be amenable to seg-
mentation, though even here there are problems caused by the
flow of vowels into consonants[12], and of the smooth concate-
nation of musical events in a legato phrase[20]. In polyphonic

audio, events from distinct instrumental sources will overlap. A
pragmatic approach to tackle this situation is followed in this
paper. Where an extracted event contains obvious rhythmic con-
tent within its scope due to ‘double hits’ heuristics can weed
out this event as unsuitable for addition to the discovered events
database, or in need of further processing.

Labelling of audio based on some set of features and the use
of a database of such information under certain compositional
constraints of continuity forms the basis of ‘audio mosaicing’ or
‘concatenative synthesis’[23, 13, 25]. Whilst concatenative sys-
tems at present usually deal with individual FFT frames (thus
operating at a granular level) and the database of these frames
is searched for closest matches to a target feature set, the event
chunks can of course be much larger. The database construction
and access in NRT composition or live performance may also
provide useful techniques for those taking the database part of
this work further. NRT MATLab implementations of concatena-
tive sound synthesis have been made by Schwarz and Sturm[23,
25]. Jehan[9] demonstrates a general system with event segmen-
tation capabilities based on loudness, pitch and timbre from a
Bark scale frequency band frontend. Lazier presents a real-time
model[13].

2. EVENT DETECTION

Sound events are tagged using some form of onset detection;
the exact algorithm may be selected for different compositional
needs. It is common in research to separate a detection func-
tion which gives some measure of evidence for likely onset po-
sitions, from the peak picking function which selects the onsets
themselves[1].

2.1. A psychoacoustically motivated detection function

Klapuri[10] introduced a detection function based on intensity
change discrimination, utilising the log difference of spectral
power in bands. Variations of this method along with other
detection functions from the literature were compared with re-
spect to onset detection performance on a large expert anno-
tated database; the full details are given in an earlier paper[5].
The best performing detection function used Klapuri’s difference
of log power on ERB scale bands, where power was converted
to decibels and weighted by ISO2003 equal loudness contours.
Contour corrected ERB scale band signals also form an input to
the loudness estimation and perceptual attack time models pre-
sented in subsequent sections.

Whilst this onset detection function is optimised for percus-
sive transients, its performance on slow attacks and especially
pitch percept dominated note events, for instance, legato cello



Figure 1. Original signal, ERB band detection function,
smoothed and differenced, peak picker output

playing, is non-optimal[5]. It remains however an accurate and
efficient solution for its intended domain.

2.2. Peak picking the detection function

The critical effect of the peak picking algorithm operating on
a given onset detection function has been highlighted by Juan
Bello and co-authors[1], who introduced an adaptive threshold
peak picker. Some alternative peak pickers were assessed em-
pirically, and whilst none outperformed the adaptive threshold
peak picker on the evaluation test set, competitive performance
was obtained using a simpler fixed threshold algorithm.

The steps in this algorithm are enumerated below and an ex-
ample appears in figure 1.

1. Smooth the detection function with the FIR filter given by
coefficents [0.378, 0.27, 0.162, 0.108, 0.054, 0.028];

2. Take the first order difference

3. For all frames i=1 to N

(a) Require maxima: If ( (df(i)< df(i-1) OR (df(i) <
df(i+1))) df(i)=0;

(b) Ignore values below some noise floor: If (df(i)<
0.8) df(i)=0;

(c) If there is a greater value of df within 10 frames
either side, df(i)=0

The peak picker works online with a delay of 10 frames to
account for the scoring with respect to previous and future de-
tection function values. Thus it is not suitable to an ’as fast as
possible’ onset detection but works with a cognitively plausible
processing delay for event spotting.

2.3. Event Extraction

Given an onset detection procedure, offsets can be selected based
on the criterion that an event be in a required duration range, that
the loudness does not fall below some threshold relative to the
peak, and that no new onset is detected. Any fail of these con-
ditions signifies an offset position. This is the natural procedure
suggested by Smith a decade ago[24]. A zero crossing correction
is applied to minimise clicks. A further small envelope at onset
and offset may be applied as a further precaution against clicks
in resynthesis of the events, though this was often unnecessary
in practise. Note that only one event is extracted at a time, and
whilst the event boundaries could be allowed to overlap slightly,

true polyphonic extraction is not attempted. The great difficulties
in resynthesising independent sound streams from ambiguously
overlapping spectra should be apparent.

3. FEATURES DETECTED

Three main perceptual features of an event are extracted, and
form primary attributes to catalogue events in the database. Ad-
ditional features to these were explored and included Parncutt’s
notion of salience[17] and the statistical features detailed in sec-
tion 4 below.

3.1. Loudness percept

The 40 ERB scale band phon loudnesses can be summed to form
an instantaneous loudness function. This may be integrated over
time (frames) to make a loudness percept. Jehan[9] dealt with
this in terms of spectral and forwards temporal masking. Whilst
more complex loudness models have also been implemented, a
useful first approximation feature for the comparison of events
was found by considering the loudness during the attack stage
of the event as a weighted sum of the first 17 frames of instanta-
neous loudness:

loudness(n) = 10 log10
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Where the event starts at frame 1. The calculation of the
attack percept weights earlier frames more than later with an ad-
ditive series, favouring fast build-ups of energy. The number
17 corresponds to a 200mS integration limit for the chosen FFT
(44100/512= 86.1328 frames per second. 200mS corresponds
to 0.2*86 or about 17 frames), consistent with psychoacoustic
models of loudness[16, 7].

3.2. Pitch percept

Just as many onset detection models can be selected for the seg-
mentation, so too many published pitch detection algorithms can
be imported. Whilst this attribute is most easily managed for
monophonic instrument tones, primary pitches in polyphonic au-
dio may be extractable, for instance by a spectral component
analysis[11].

In prototyping, various models were implemented including
Klapuri’s aforementioned work[11], autocorrelation methods[6],
and a related FFT of FFT transform[14]. The most successful
model, however, and the one adopted, was the Brown/Puckette
constant Q transform on a quartertone scale with phase corrected
frequency analysis[3]. Figure 2 demonstrates the output of this
pitch detection, showing tracks for the basic quartertone scale
detection by spectral template, and the fine tuning of the instan-
taneous frequency correction. A power envelope was used to
turn the pitch detector on or off for near silences, to avoid wild
estimates during such times.

3.3. Perceptual attack time

Not all events are percussive. Slow attack envelopes may shift
the perceived onset time later into the physical event. Even with
a percussive transient attack, it takes time for the temporal in-
tegration of the signal energy to trigger a cognitive detection of
the event. This leads one to suspect that the perceptual onset



Figure 2. Pitch detection, with the second line showing the
curve for a quartertone resolution recognition based on a con-
stant Q transform, the third line an instantaneous frequency cor-
rection. The fourth is the power envelope used to turn the pitch
detection off for near silences.

rather than the physical may provide a useful feature of signals,
and in particular assist with accurate scheduling of a sequence
of events, with regard to synchonising onset times within the
stream, and with respect to external time points. The study ofp-
centergrew out of work on automatic analysis of prosody in the
speech processing literature and has been termedperceptual on-
set time[26] or perceptual attack time(PAT)[8] in experimental
work on instrumental tones.

Predicting the PAT allows the early scheduling of the play-
back of events so as to ’sound’ at a desired time point. Particu-
larly for slow rising tones, naive scheduling may lead to the per-
ception of the tone occuring after a desired entry point. Knowl-
edge of the attack portion of the perceptual envelope also al-
lows a further parameter for the classification of events in our
database.

For this project a number of models of PAT were investi-
gated. Vos and Rasch[26] promote a model where the PAT is
determined by some proportion between initial power and peak
power in the attack envelope. Gordon [8] explores a greater va-
riety of options, discarding the Vos and Raschpercent of max
model, with the most successful model on his data being one
which takes into account the time the power envelope slope is
above a threshold, which he calls therise time.

Finding difficulties with these musical tone models, partic-
ularly for polyphonic audio, a more complicated model due to
Pompino-Marschall from the speech processing literature was
adapted, which leverages the ERB scale band energy signals[18].
A bandwise approach considers the peaks in the envelopes as in-
fluencing the position of the perceptual attack point. The full al-
gorithm is not reproduced here. In the adaptation, the band wise
signals are the ERB band loudness values calculated as above.

In practise, there was some difficulty in getting any model of
PAT to work on general polyphonic audio signals. A constant
20mS rule for the PAT was useful as a first approximation, es-
pecially for percussive sources. Psychoacoustic experiments are
underway to investigate this factor further.

Figure 3. Loudness curve in phons against frame of a ’bad’
event, expectation marked as a vertical line

4. HEURISTICS FOR EVENT SELECTION

In order to assess the usability of captured events, a number of
heuristics were devised. These utilise the first four statistical
moments of the loudness envelope (1), being expectation, vari-
ance, skewness and kurtosis, and are passed to the database as
attributes of the event. The loudness curve over the frames of
the event is normalised into a discrete distribution by subtracting
the minimum value and dividing by the sum of all values. This
normalisation step is convenient for comparing the envelope of
different events varying in dynamic.

Four heuristic rules to determine ’good’ or ’well-behaved’
events were established empirically. Flags allow them to be
turned on or off in a particular application, and the constants
mentioned in the rules are really parameters, set here at effec-
tive values found in trials. The rules are expressed as conditions
which if passed, mark an event ’misbehaved’.

1. (LENGTH) event length not within 100 mS to 1500 mS
range

2. (HEAVY WEIGHTING) expectation> 11.2 frames (130
mS)

3. (SKEW) skewness< 0

4. (SECONDPEAK) Find maximum loudness FIRSTMAX
in first 45% of the event Find a second maximum SEC-
ONDMAX at least 60mS after the first up to the end
of the event If SECONDMAX exists and the difference
FIRSTMAX- SECONDMAX< 1 (phon)

Failure of length is just a simple test condition to make sure
onsets don’t occur too often. Some experimentation has taken
place with changing the threshold of the onset detection based
on feedback from the frequency and duration of events detected,
but in practise the fixed parameter onset detection above has been
good enough for compositional purposes. The tests on expecta-
tion and skewness consider cases where the loudness envelope
is not a standard attack then longer decay shape. The HEAVY
WEIGHTING expectation test penalises events that have too much
of a bias to significant loudness later in the event. The SKEW-
NESS test looks for loudness curves asymmetrically slanted to
the left rather than the right. This corresponds to a ’reverse’
sound shape, with a large proportion of time spent in attack
rather than decay.

The SECONDPEAK test considers problems of double strikes.
These occur not only in polyphonic audio, but also with incorrect
onset detections on fast event sequences in monophonic instru-
mental music.

In figure 3, the skewness was -0.2541, obviously skewed to
the left. The expectation is 11.9166. This event failed the HEAVY
WEIGHTING, SKEW and SECONDPEAK tests. It probably
corresponds to a misdetection by the onset detector where a dou-
ble hit has not been segmented.



5. COMPOSITIONAL APPLICATIONS

The analysis system was developed in MATLAB, in a modu-
lar design to test alternative feature algorithms and optimise for
given compositional applications. Ready application is found in
the automated production of databases for composition, allow-
ing the composer to spend more time on composing with events
rather than preparing them. On a given source, MATLab code
produced a database in the form of an output text file annotated
with event locations in the source soundfiles, pitch and loudness
contours, perceptual attack time and loudness attack rating, loud-
ness statistics and salience. This output text file could be loaded
into a composition language like SuperCollider[15], in which
the actual algorithmic composition work exploiting the discov-
ered events took place. The system was tested in particular on
a library of multi-stopping recordings made with an old school
violin; tweaking for specific cases is straight forward.

These analysis procedures have also been ported into a real-
time system. SuperCollider was the real-time environment cho-
sen, for its efficiency, and the ease of extending it through the
writing of new classes of the SuperCollider language, and new
C Unit Generator plug-ins for the signal processing. The inte-
gration of algorithmic composition with sound synthesis code in
the language greatly facilitated use of the database in live perfor-
mance, where events from a live audio input can be captured and
catalogued on-the-fly with a necessary latency of the duration
of an event (to determine its boundaries and features). This em-
powers a number of novel compositional effects, including delay
lines that are event sensitive, event based time stretching and or-
der manipulation[9], on-the-fly categorisation effects[4] and any
algorithmic reuse of events recorded from a human performer by
the database creating computer.

6. FURTHER WORK

Work is ongoing to move as much as possible of the database
system to a real-time footing for electronic music performance.
There are great dividends to the automatic extraction of ’inter-
esting’ events from an acoustic performer, as the source material
for a ’sensitive’ accompanying computer music part.

There are many more possible features described in the liter-
ature, and variants to the heuristics and assumptions on the un-
derlying signal are all directions of further exploration. Events
may also be characterised in terms of timbre (perhaps with tim-
bral descriptors found in an unsupervised sense). Whilst instru-
ment recognition remains a topic for extensive future research,
a real-time prototype of a drum sound categoriser based on the
spectral centroid was presented in an earlier paper[4] and used
in performance to analyse a vocal beat boxing input.

The most significant area of exploration is that of compu-
tational scene analysis. Further event heuristics could be de-
vised to consider a bandwise loudness envelope view of mul-
tiple strikes, where events can be assessed for the likely overlap
of multiple timbres within their duration. The combined detec-
tion function has abandoned spectral information that might give
clues to such activity.

7. CONCLUSIONS

An event analysis system has been described which segments
audio based on a psychoacoustically motivated function. Further
features were extracted for captured events including pitch, per-
ceptual attack time and loudness statistics. A number of heuris-
tics were introduced to aid pragmatic use of the event capture

technology in a compositional setting for the construction of
event databases in both non-realtime and live causal performance.
The system described in this paper is relatively general and mod-
ular, and new onset detection, pitch detection and PAT algo-
rithms can be substituted for those described here. The same
model has been successfully applied to gathering events from
pop music, monophonic and polyphonic acoustic instruments.

8. REFERENCES

[1] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and S. B. Sandler.
A tutorial on onset detection in music signals.IEEE Transactions on Speech
and Audio Processing, 2004.

[2] Paul Brossier, Juan P. Bello, and Mark D. Plumbley. Real-time temporal
segmentation of note objects in music signals. InProc. Int. Computer Music
Conference, 2004.

[3] Judith C. Brown and Miller S. Puckette. A high-resolution fundamental fre-
quency determination based on phase changes of the Fourier transform.J.
Acoust. Soc. Am., 94(2):662–7, 1993.

[4] Nick Collins. On onsets on-the-fly: Real-time event segmentation and
categorisation as a compositional effect. InSound and Music Computing
(SMC04), pages 219–24, IRCAM, Paris, October 20-24 2004.

[5] Nick Collins. A comparison of sound onset detection algorithms with empha-
sis on psychoacoustically motivated detection functions. InAES Convention
118, Barcelona, May 28-31 2005.

[6] Patricio de la Cuadra, Aaron Master, and Craig Sapp. Efficient pitch detection
techniques for interactive music. InProc. Int. Computer Music Conference,
Havana, Cuba, September 2001.

[7] David A. Eddins and David M. Green. Temporal integration and temporal
resolution. In Brian C. J. Moore, editor,Hearing, pages 207–42. Academic
Press, San Diego, CA, 1995.

[8] John W. Gordon. The perceptual attack time of musical tones.J. Acoust. Soc.
Am., 82(1):88–105, July 1987.

[9] Tristan Jehan. Event-synchronous music analysis/synthesis. InProc. Digital
Audio Effects Workshop (DAFx), Naples, Italy, October 2004.

[10] Anssi Klapuri. Sound onset detection by applying psychoacoustic knowl-
edge. InProc. IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP),
pages 3089–92, 1999.

[11] Anssi Klapuri. Multiple fundamental frequency estimation based on har-
monicity and spectral smoothness.IEEE Transactions on Speech and Audio
Processing, 11(6), November 2003.

[12] Reinier W. L. Kortekaas, Dik J. Hermes, and Georg F. Meyer. Vowel-onset
detection by vowel-strength measurement, cochlear-nucleus simulation, and
multilayer perceptron.J. Acoust. Soc. Am., 99(2):1185–99, February 1996.

[13] Ari Lazier and Perry Cook. Mosievius: Feature driven interactive audio mo-
saicing. InProc. Digital Audio Effects Workshop (DAFx), 2003.

[14] Sylvain Marchand. An efficient pitch tracking algorithm using a combina-
tion of Fourier transforms. InProc. Digital Audio Effects Workshop (DAFx),
Limerick, Ireland, December 2001.

[15] James McCartney. Rethinking the computer music language: SuperCollider.
Computer Music Journal, 26(4), 2002.

[16] Brian C. J. Moore, Brian R. Glasberg, and Thomas Baer. A model for the
prediction of thresholds, loudness, and partial loudness.J. Audio Eng. Soc.,
45(4):224–40, April 1997.

[17] Richard Parncutt. A perceptual model of pulse salience and metrical accent
in musical rhythms.Music Perception, 11(4):409–64, 1994.

[18] Bernd Pompino-Marschall. On the psychoacoustic nature of the p-center
phenomenon.Journal of Phonetics, 17:175–92, 1989.

[19] Curtis Roads.Microsound. MIT Press, Camb, MA, 2001.

[20] Xavier Rodet. Synthesis and processing of the singing voice. InProc. 1st
IEEE Benelux Workshop on Model based Processing and Coding of Audio
(MPCA-2002), Leuven, Belgium, November 2002.

[21] S. Rossignol, X. Rodet, J. Soumagne, J.-L. Collette, and P. Depalle. Auto-
matic characterisation of musical signals: Feature extraction and temporal
segmentation.Journal of New Music Research, 28(4):281–95, 1999.

[22] Eric D. Scheirer. Towards music understanding without separation: Seg-
menting music with correlogram comodulation. InIEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics, 1999.

[23] Diemo Schwarz. New developments in data-driven concatenative sound syn-
thesis. InProc. Int. Computer Music Conference, 2003.

[24] Leslie S. Smith. Sound segmentation using onsets and offsets.Journal of
New Music Research, 23:11–23, 1994.

[25] Bob Sturm. Concatenative sound synthesis for sound design and electroa-
coustic composition. InProc. Digital Audio Effects Workshop (DAFx), 2004.

[26] Joos Vos and Rudolf Rasch. The perceptual onset of musical tones.Percep-
tion and Psychophysics, 29(4):323–35, 1981.

[27] Trevor Wishart.Audible Design. Orpheus the Pantomime Ltd, York, 1994.


