
0 Introduction
The fast pace of computerized life has provoked equally dy-
namic artistic responses. In one current of contemporary per-
formance practice, usually termed “live coding,” the actors
seem to take their relationship with computers to a natural
conclusion. In intimate portraits of human and machine, they
accept the challenge of programming on the spot, typically for
an audience in a concert setting. Although there are gentler
slopes away from the hot lights, where live coding is just inter-
active code prototyping on interpreted systems or a networked
chatter, many liberating stresses and radical joys have come out
of the explicit live scene. Usually, the programming is carried
out within some sort of arts programming environment, such
that the program output affects audio and visuals and the op-
erator projects his/her screen during performance to make
the process (in principle) transparent. From being intently
hunched within the creation and manipulation of computer
code to acting and dancing through algorithmic rules away
from computer screens, the human operator’s role is critical.
This article will explore many rich veins of work within this
scene, acknowledge many historical precedents, touch upon
the inter-relation of human and machine rules and, possibly,
not proceed in quite the manner expected of it.

(1)2,3,4 Definitions/Declarations
A definition of live coding might preempt the creative explora-
tion of its potential and sets itself up to be re-written in mid-
flow by the more zealous live coders. However, to help the
reader less familiar with existing work, let me quickly declare
two existing definitions, three perhaps helpful analogies and
four real examples. Computers remain a primary touching
point, but let us also keep in sight examples that center on
human rule-making independent of digital computability.

1.	 “Live computer music and visual performance can now
involve interactive control of algorithmic processes. In
normal practice, the interface for such activity is deter-
mined before the concert. In a new discipline of live
coding or on-the-fly programming the control structures
of the algorithms themselves are malleable at run-time”
[1].

2.	 “Digital content (music and/
or visuals predominantly) is
created through computer
programming as a perfor-
mance” [2].

The two definitions above, re-
produced from previous academic
papers, concentrate on the audio
and visual modalities, primarily fo-
cusing on live concert settings for
digital multimedia [3]. Let us con-
sider more general extensions as
we analogize live coding, exploiting
such notions as:

1.	 following a recipe, but deciding halfway through cooking
to substitute one ingredient for another

2.	 reading a Choose Your Own Adventure book and decid-
ing to change the rules or indeed to rewrite the book
because the restrictions and paths did not please you

3.	 dramatizing a computer algorithm: for example, let
people place themselves into order of height, using an
agreed-upon sorting algorithm [4]; a live-coding twist
would be to perturb the algorithm halfway through, per-
haps when one participant wanders off to fetch a drink
or an external agent rugby-tackles someone mid-move.

©2011 ISAST	 LEONARDO, Vol. 44, No. 3, pp. 207–211, 2011       207

g e n e r a l a r t i c l e

Live Coding of Consequence

Nick Collins

Nick Collins (composer-programmer), University of Sussex, Falmer, Brighton, BN1 9QJ,
U.K. E-mail: <N.Collins@sussex.ac.uk>.

a b s t r a c t

A live coding movement has
arisen from everyday use of
interpreted programming envi-
ronments, where the results of
new code can be immediately
established. Running algorithms
can be modified as they pro-
gress. In the context of arts
computing, live coding has
become an intriguing movement
in the field of real-time perfor-
mance. It directly confronts the
role of computer programmers in
new media work by placing their
actions, and the consequences
of their actions, centrally within
a work’s setting. This article
covers historical precedents,
theoretical perspectives and
recent practice. Although the
contemporary exploration of live
coding is associated with the
rise of laptop music and visuals,
there are many further links to
uncover throughout rule-based
art. A central issue is the role of
a human being within computable
structures; it is possible to find
examples of live coding that do
not require the use of a (digital)
computer at all.

Fig. 1. Scheme Bricks interpreter visualization. (© Dave Griffiths)

208       Collins, Live Coding of Consequence

In the main, recent activity in live cod-
ing has centered on computers, although
there are other paths, from circuit bend-
ing to algorithmic choreography. We
shall also, further down this supposedly
linear text, explore the artistic compul-
sion to change one’s mind mid-progress.

Four representative projects that dem-
onstrate live coding and some of its issues
are:

1.	 The long-running laptop ensemble
slub, a London-based sometime-
duo, sometime-trio who have been
projecting their laptop screens
since the year 2000. The projec-
tions reveal their homemade soft-
ware, much of which establishes live
codable environments where run-
ning programs can be modified in
real time. Alex McLean has even
gone so far as to write programs
that modify their own source code
[5].

2.	 Craig Latta’s Quoth environment,
which, like a 1980s adventure-game
text engine, uses natural language
commands to manipulate musical
objects and thus demonstrates that
not all live coding relies on syntax
that is impenetrable to a general
audience (many other accessible
systems have been constructed,
from graphical interfaces to self-
documenting object names) [6].

3.	 Max/MSP battles carried out from
a blank starting page within fixed
time limits and judged by audi-
ence acclaim, for example at the
instigation of Marcel Wierckx with
his students [7]. Within this visual
patching system, participants build
up their graphs of objects over time
from a large number of types of
object and associated parameters
available within Max/MSP [8].

4.	 Taking the Unit Generator Para-
digm of computer music software
back to hardware: live patching
of circuits, as explored by the live
electronics ensemble Loud Ob-
jects, who wire up circuitry with sil-
houettes of the action visible via an
overhead projector [9].

Many computer environments have
been built to support live coding, in-
cluding systems that have gone on to at-
tract larger user bases, such as ChucK,
Impromptu and Fluxus. Any interpreted
language can be used for live coding;
for instance, the audio programming
language SuperCollider has been a
popular choice and was a platform for
many early experiments. Originally, a few

hardy souls were involved in coding with
FORTH in the 1980s, including a proto-
typical onstage live-coding experiment
(Ron Kuivila, 1985, working without
projection) [10]. However, as examples 3
and 4 above demonstrate, purely textual
programming languages are not the only
option. Live patching, whether through
graphical programming languages or live
circuit-building, is often of a less abstract
form, although of course the profundity
of abstraction is neither the central point
of all performances nor the only crite-
rion of success.

Parallels to live coding (outside of the
act of concertizing) can be found in vari-
ous board and on-line games, where the
rule sets themselves become an object
of debate and modification. The most
famous include Nomic [11], invented by
Peter Suber, and card games such as 1000
Blank White Cards or Dvorak (in variants
where self-modification of rules is actively
allowed) [12]. Such manipulations have
also formed the basis of real political
action. The People Speak (founded by
Mikey Weinkove and Saul Albert) have
run town hall–style meetings with com-
puter vision–based voting systems, where
the audience must negotiate their own
political process to decide issues [13].
Existing large-scale political systems,
such as those of entire countries, allow
often highly indirect means of eventually
adjusting the laws of the land, but with
sufficient lag to make their status as “live”
coding somewhat more tenuous.

No algorithms, from a computer-
science point of view, have to be involved
in politicking. However, to give a software
analogy, a similar experiment has taken
place in the on-line game spring_alpha,
which exists in a permanent “alpha state”
of re-development, although the live cod-
ing is here more a non-real-time infinite
design cycle [14]. Google Wave and other
real-time collaborative text-editing tools
are of interest here as means of keeping
rewrites in flow and multiple simultane-
ous writers empowered. The ensemble
PowerBooks UnPlugged [15] code from
within an audience, using laptops and
their built-in speakers, spatialized by the
distribution of band members sharing
code via wireless network. Multi-user live
coding is a prominent strand that takes
the pressure off a single performer and
eases algorithmic complexity in a task
shared.

In all this, the very division of hu-
man decision-making from the rigidity
of machine instructions is a continual
trope (with human participation un-
der potential erosion in more complex
artificial intelligence scenarios). As in

the generative arts, the rules allowable
to humans are often more ambiguous
than anything allowed within comput-
ability [16]. If anything, however, live
coding’s combination of humans acting
against their computer programs makes
this even more tangled—and excitingly
human!

Live coding’s precedents intersect with
the history of the algorithmic arts, from
early algorithmic composition (Guido
d’Arezzo in 1026, Athanasius Kircher in
1645, Johann Kirnberger in 1776 and
many more [17]) to text pieces and con-
ceptual art to parlor games and conversa-
tion. Ancient Greek dialectics [18] and
Renaissance mathematical competitions
(lasting 40–50 days) have also previously
been implicated [19], although a direct
anticipation of laptop live coding relies
on 20th-century technology. Live coders
are highly interested in creative links to
their practice [20] and recognize that
manifestations of algorithmic structur-
ing occur throughout the arts. Literary
influences might include Stéphane Mal-
larmé, Julio Cortázar’s novel Hopskotch
(1963) or particularly Hermann Hesse’s
Glass Bead Game (1943), which describes
a future civilization wherein a complex
live game highly influenced by musical
theory forms the basis for society. Live
coding has its jocular side, even poten-
tially live comedy elements; certainly,
musical live coding has been observed
to contain many extramusical events (for
example, by David Wessel in witnessing a

Fig. 2. The TOPLAPapp interpreted
instruction sound synthesizer, for iPhone/
iPod Touch. (© Nick Collins)

Collins, Live Coding of Consequence     209

duel at the International Computer Mu-
sic Conference in 2005) [21]. The move-
ment has also been allied with software
art, where a consciousness of the social
role of computers and the ubiquity of
aspects of programming in modern life
underlie some theorizing [22].

Inasmuch as there might be said to
be a self-conscious live coding move-
ment primarily motivated by real-time
interpreted audiovisual programming
environments, activities are traced back
to around 2000, when (some) laptop
musicians became aware of the need to
project their computer screens to avoid
the perception that nothing was taking
place. Gradually, consciousness of the
potential and pitfalls of live coding grew.
For instance, slub have always made their
own software, but at first Alex McLean
more often invoked command-line pro-
grams live rather than live-programming
an algorithm’s internal state itself [23].
The Transnational Organisation for the
Promotion of Live Art Programming
(TOPLAP, to give one of its interpreta-
tive abbreviations) was founded in 2004
at the close of the “changing grammars”
meeting organized in Hamburg by Julian
Rohrhuber and has been a focal point for
much subsequent activity.

Acknowledging such prior existences,
which can be pursued in various papers
already endnoted, we stumble now into
consequential territory.

5 Consequences
Type :

Make a sine wave
—or at least its translation, within your
favorite computer music environment.
Please run your manifestation of this
pseudocode. Now consider your next
action; what is already running is a sine
wave, the parameters of which you may
want to tweak. Whether your environ-
ment gives you an easy opportunity to do
this or not, or whether you anticipated
such a need, is a key challenge in practi-
cal live coding.

Is it better to have a bird in the hand
than two in the cliché? Immediate re-
wards are not necessarily as compelling
as future magnificence, but a trade-off of
patience exists in the mind of any nor-
mal audience. The more profound the
live coding, the more a performer must
confront the running algorithm, and
the more significant the intervention in
the works, the deeper the coding act. In
programming, small changes can have
grand repercussions; it is not impossible
to imagine changing a single character
or connection to achieve substantial con-

sequences (for instance, substituting one
data array for another via similar names
at a key juncture, moving from “for” to
“fork” or “and” to “rand,” making a single
rewiring between waiting complex pro-
cesses).

Most live coding performances fail to
live up to this promise, because some-
times it is hard enough just to get a pro-
gram running at all let alone somehow
to have anticipated enough about the
likely program flow to make significant
moves. A primary difficulty of much live
coding is also common across all live per-
formance: maintaining enough variety
to keep an audience engaged. Much live
coding involves an element of improvi-
sation rather than exact rote playback,
which plays to the strengths of potential-
ity inherent in any coding moment. Still,
as with any improvisation, intensive prac-
tice makes for a much better repertoire
of gestures for arising situations. An en-
hanced awareness of the rigor of practice
and the demands of concertizing is filter-
ing individuals in through the live coding
community as they assess the quality of
their performances [24].

Audience expectation has increased
as the shock factor (and perhaps the ad-
ditional leeway) of the early days has di-
minished; people are now often aware of
live coding in advance. Tensions can be
palpable as an audience hangs on every
keystroke, adding to the tightrope effect
for a performer. Such tensions are not
reduced by the recurring paradigm of

the blank slate, wherein performers at-
tempt to start from a blank page. Men-
tioned above in the context of graphical
patching in Max/MSP, it is a stalwart of
all text environments, too, where a blank
document forms a strong starting point
for a work [25].

6 Change of Mind
Time for a sudden change in essay struc-
ture? In one example of self-referential
writing, with a host of literary precedents
from Shakespeare and Molière to Sterne,
John Fowles intervenes in his own book
in The French Lieutenant’s Woman (1969).

7 Change of Mind
Or back again; from one avenue of
thought, retreat once more to the origi-
nating stream, though perhaps energized
anew by the course you found yourself
deviating along [26].

8 New Developments
from Visualized Techno
Compilers to Algorithmic
Choreography
Live coding has proliferated, extending
many new tendrils. From mobile live cod-
ing to projects somewhere between per-
formance art and contemporary dance,
the algorithmic literacy of digital arts
practitioners matches technology in cul-
ture. In this section, some new examples
are discussed.

Fig. 3. Human live coding; Click Nilson follows Matthew Yee-King’s coded instructions, in a
practice session in front of a BBC camera crew. Nilson attacked the camera within seconds of
this shot. (© Nick Collins)

210       Collins, Live Coding of Consequence

Beginning with some recent software-
linked developments, Dave Griffiths has
been responsible for some of the most
cutting-edge employments of game in-
dustry graphical engines for live coding
[27]. His various pieces typically involve
a limited (yet powerful) control set of
operations, often selected via a game-
pad, which dynamically complicate the
lives of graphical robot agents (Al Jazari,
2007), the growth of a plant (Daisy Chain,
2008) or the traffic in a virtual city (Jam-
City, 2009). In Missile Command (2008),
a remake of the computer game of the
same name is abstracted from within,
heading from video game to audiovisual
art piece as the source code is rewritten
[28]. In performance with slub, one of
his impressive set pieces is a graphical
compiler environment used for sound
synthesis called Scheme Bricks (2008).
The software visualizes the nesting of a
program by staggered, rightward-jutting
blocks, which flash invoked actions as the
program runs over time (Fig. 1).

New platforms are always attractive
targets. Before summer 2010, Apple
had restricted developers from allowing
live scripting languages on the iPhone,
potentially blocking live coding ap-
plications. Therefore the challenge of
creating a live-coding-themed app for
the iPhone as an art project seemed ir-
resistible. The TOPLAPapp App, if that’s
not too chewy a mouthful, is a promo-
tional tool I built for TOPLAP that owes
a debt to Griffiths’s exploration of small
instruction sets and also to the instruc-
tion sound synthesis of the 1970s [29].
A grid allows the ordered placement of
six letters, in fact corresponding to 11
instructions, since the small p is a modi-
fier to the letter appearing after it. Each
instruction is further modulated by the
position of an associated slider (Fig. 2).
The app was originally released as a puz-
zle, without instructions, but has since
been open-sourced, so that in principle
its secrets are available to those who
might care to look. The sound synthesis
engine exploits the dynamic creation of
breakpoints that indirectly specify a time-
amplitude waveform, and the choice of
the next breakpoint follows from the grid
of instructions (the program is the list of
letters and their parameters) [30].

From software to wetware: Live cod-
ing itself raises consciousness of human
beings within the innards of algorithms.
The human live coders who flirt within
the algorithmic environments, teasing
and tinkling the guts of the processes, are
the most powerful agents around. Their
presence continually reinforces the tru-
ism that software is written by people

and makes live its construction and de-
construction.

Artists have reflected on the place of
the human in the digital arts, guided by
a heightened awareness in multiple dis-
ciplines of the role of the human body in
interaction. The image of the hunched-
over laptopist, relatively inert but for
dancing fingers, may suggest a central
pose but can itself be subverted. Some
artists, while still exploring algorithms,
have actively removed the computer,
or at least transformed its facilitation
role.

On the borders of more bodily explicit
live coding (as an algorithm rewriting ac-
tivity), a number of projects can be men-
tioned. Originally and independently, in
a 2007 Hong Kong Max/MSP workshop
and at a dorkbot camp near London,
some have explored the live patching of
bodies analogous to a signal processing
network (the active on-the-fly reconfigu-
ration necessary for significant live cod-
ing itself is less explored, but the act of
patching is itself a highly evocative peda-
gogical tool) [31]. Using conductive ink,
the Humanthesizer <www.bareconduc-
tive.com/> recently explored the closing
of circuits by human contact, a feat antic-
ipated by 40 years in Bruce Haack’s early-
1960s Dermatron [32]. Demonstrating
once more the links to 1950s happenings
and 1960s text pieces, and subsequent
rule structures in the improvisation com-
munity such as John Zorn’s Cobra (1984),
the ensemble Halal Kebab Hut explore
live algorithmic game pieces, where per-
former actions are dependent on pre-
vious actions of their fellows following
charts [33]. In Nik Hanselmann’s body-
fuck (2009), computer vision is used so
that the performer’s distinct gestures can
be tracked as commands in the diabolical
programming language brainfuck <www.
vimeo.com/7133810>.

Against such a backdrop, I have been
actively exploring roles for more hu-
manly active live coding with various
collaborators, with explicit modifica-
tion of algorithmic processes during a
performance. With the choreographer
Teresa Prima, I ran experiments with
a blackboard and dance instructions.
With the improvisation ensemble In
Sand, I explored instruction-list passing
and modification within an ensemble
of acoustic musicians. Most intensively,
the duo Wrongheaded (a collaboration
with Matthew Yee-King) have been per-
forming algorithmic dancing routines
that combine computer live coding and
human dance (Fig. 3). Human actions
are coded on the spot and themselves in-
terfere with the duo’s ability to continue

working at the computers by which they
specify the algorithms.

Although this live coding of human
movement has arisen out of an explicitly
software-based movement, there are prec-
edents within the world of contemporary
dance itself. From the rule-based systems
of Cage and Cunningham through Rob-
ert Dunn’s choreography class [34] to
more recent formalist experiments, fo-
cus on process has oscillated with that
on product. When confronted with live
coding, Prima mentioned João Fiadeiro’s
“real time composition” as her reference
point—for example, his piece Existência
(2002) and its in-the-moment creation
with interventions. In the ChoreoGraph
system first proposed and implemented
by Michael Klien and Nick Mortimore in
the 1990s, live scoring of dancer actions
is achieved through a software interface,
with the working score accessible by the
dancers on stage monitors [35]. This is
equivalent to the live scoring systems for
performers explored in computer music
and allows the same intervention in run-
ning processes. The extent to which live
systems rewriting has been a central fea-
ture of choreographic work in contem-
porary dance is arguable, but there are
certainly some analogous structures and
devices. When maintaining a separation
of musicians and conductors, performers
and choreographers, the feedback loops
of action to the ability to program new
instructions (as found in Wrongheaded’s
work) are not paralleled. Yet while live
coding under the banner of “live coding”
per se has proceeded independently,
there come moments of reflection and
conscious search that suddenly make
clear the parallel interests of the two
fields.

10 (base 9) Conclusions
Why is live coding of consequence? It
touches on many angsts of modern cul-
tural life; lacking a singular rule set for
life, it is highly therapeutic to play out
many options! Live coding mediates hu-
man action within (self-defined) frame-
works of rules that are themselves made
to be broken, raising both sociopolitical
and technological issues. Its relevance to
our computer-sped world is hard to deny.
There is always one step into abstraction,
with direct actions guided by temporary
templates. Yet ultimately humans have
the advantage of full freedom of action,
and live coding is rarely authoritarian in
the sense that instructions are unbreak-
able; perhaps the whole point is to maxi-
mize the potential to change one’s mind.

Searching for new performance ven-

Collins, Live Coding of Consequence     211

ues (sweetened by a little Performing
Right Society Foundation for new music
money), TOPLAP in the U.K. have been
diversifying. They have explored a variety
of alternative venues, from pubs through
planetariums (Color Plate B) to a Janu-
ary 2010 performance in a converted
anatomy chamber, here co-opted for the
dissection of algorithms. This local activ-
ity is accompanied by an international
scene where “live coding” has become a
common term to add to the categories of
work solicited in festival calls. Live coding
is not solely a performance bloodsport
nor bereft of audience satisfaction, and
the modalities of engagement extend
beyond mere laptop audio and visuals.
There seems to be no end of the poten-
tial permutations of the human amongst
the algorithms.

Acknowledgment

{inf.do{“thankyou”.post}}.fork

References and Notes

Unedited references as provided by the author.

All web links checked 1 November 2009 unless
otherwise stated.

1. Adrian Ward, Julian Rohrhuber, Fredrik Olofs-
son, Alex McLean, Dave Griffiths, Nick Collins and
Amy Alexander. “Live algorithm programming and
a temporary organisation for its promotion,” in Pro-
ceedings of the README Software Art Conference, Aarhus,
Denmark, 2004.

2. Andrew Brown “Code Jamming,” M/C Journal 9(6)
(Dec. 2006) Retrieved 22 Aug. 2009 from <http://
journal.media-culture.org.au/0612/03-brown.php>.

3. In a posting to the livecode mailing list, Alex
McLean revealed many interesting definitions cre-
ated by his survey participants in an online study.
See “Live coding survey — please respond!” in the
archives, 17 September 2009, <http://lists.lurk.org/
mailman/listinfo/livecode>.

4. This activity was reputedly carried out at a perl us-
ers meeting in a bar, once upon a CPU cycle.

5. Alex McLean, “Hacking Perl in Nightclubs” (31
August 2004). Retrieved 22 August 2009 from <www.
perl.com/pub/a/2004/08/31/livecode.html>.

6. Craig Latta, “Quoth, a dynamic interactive fiction
system.” Retrieved 1 Nov 2009 from <http://netjam.
org/projects/quoth/>.

7. A nice video example is provided by Edo Paulus.
Retrieved 1 November 2009 from <www.eude.nl/
projects/max-live-coding/>.

8. A recurrent issue on the livecode mailing list has

been that of graphical versus textual programming.
No disparagement of Max/MSP’s capabilities is
meant in this paper, for without doubt Max/MSP
is a sufficiently complex system to make for arrest-
ing results and further nests other programming
languages within itself (there are some third party
externals that house entire other computer music
environments, such as rtcmix~ or chuck~. See for
instance Brad Garton’s work at <http://music.
columbia.edu/~brad/software/index.html>.

9. Nicolas Collins, Handmade Electronic Music, 2nd
Edition (New York: Routledge, 2009).

10. Documented in Curtis Roads, “The Second
STEIM Symposium on Interactive Composition
in Live Electronic Music.” Computer Music Journal,
10(2): 44–50 (1986).

11. Douglas Hofstadter. Metamagical Themas: Questing
for the Essence of Mind and Pattern (New York: Basic
Books, 1985).

12. I have often begun talks on live coding by hand-
ing out “Live Coding Cards,” which read “Pass this
card on after modifying this instruction.”

13. Saul Albert, “Who Wants to Be? . . . an audience”
(2008). Retrieved 7 November 2009 from <http://
whowantstobe.co.uk/wwtb-engage.pdf>.

14. Checked 9 November 2009, <www.spring-alpha.
org>.

15. PB_UP <http://pbup.goto10.org/>

16. Nick Collins, “The Analysis of Generative Music
Programs,” Organised Sound 13(3): 237–248 (2008).

17. See for example Gareth Loy, Musimathics, Volume
1 (Cambridge, MA: MIT Press, 2007) and Gerhard
Nierhaus Algorithmic Composition: Paradigms of Au-
tomated Music Generation (New York, NY: Springer-
Verlag/Wien, 2009).

18. Or to extend back further, perhaps 100,000 years,
the very dynamism of language is an original source
of human agencies outlining actions and revoking
them in mid-flow.

19. Ward et al. [1], also available from <www.toplap.
org/index.php/Read_me_paper>.

20. <www.toplap.org/index.php/HistoricalPerfor-
mances> and <www.toplap.org/index.php/Toplap
Papers>

21. Click Nilson. “Live coding practice,” in Proceedings
of New Interfaces for Musical Expression (NIME), New
York, 2007.

22. Ward et al. [1].

23. Adrian Ward was concurrently working on a
parody of Max/MSP called Map/MSG where boxes
contained REALbasic code and could be adjusted
in concert.

24. See Note [12] for more on practice. Increased
media exposure, for example BBC coverage of
live coding from a London gig in the summer of
2009 <http://news.bbc.co.uk/1/hi/technology/
8221235.stm>, is a powerful force for introspection
on the accessibility and contents of performance.

25. A rarer performance mode called full slate has
been broached, though not performed with to any
great degree. The easy option of using a preset is

a little like full slate coding, in that it starts from
a developed patch, but as an opposite to the blank
slate, the objective is to remove parts from a complex
apparatus in an interesting manner as you work back
to emptiness.

26. Here I have sought to change the rules of aca-
demic paper writing, but of course the system can
bend to accommodate this. In order to allow flex-
ibility to refute my own actions at a future date, I
hereby attribute this endnote to ~placeholder, the
11th-century Norman philosopher.

27. They are built with his own general-purpose au-
diovisual live coding software Fluxus <www.pawfal.
org/fluxus/>. For more project details, see <www.
pawfal.org/dave/index.cgi?Projects>.

28. Griffiths himself acknowledges the influence of
a space invaders remake and Fluxus deconstruction
by Gabor Papp (personal communication 10 Novem-
ber 2009).

29. Paul Berg. “Composing Sound Structures with
Rules,” Contemporary Music Review 28(1): 75–87
(2009).

30. This is not the only manifestation of live cod-
ing on a phone. Fredrik Olofsson has released a
SuperCollider class, RedPDU, which allows code
to be written on the phone as an SMS and sent to
an external compiler: <www.fredrikolofsson.com/
f0blog/?q=node/391>.

31. See <www.flickr.com/photos/newtables/
sets/72157600029205941/> and <http://dorkbot
london.org/wiki/index.php/Human_Patching_
Live_Coding>.

32. On a related note, David Tait mentioned to me
the example of the remote-controlled choir from the
BBC comedy ideas program Genius.

33. Simon Katan, “Halal Kebab Hut—Techniques
of Composition” (2004). Retrieved 6 November
2009 from <www.halalkebab.co.uk/writings/HKH
techniques.pdf>.

34. Sally Banes, Writing dancing in the age of postmod-
ernism (Newhaven, CT: Wesleyan University Press,
1994). Thanks also to Scott deLahunta for discus-
sions and leads on this topic of choreographic prec-
edents.

35. Scott deLahunta, Michael Klien and Nick Roth-
well, “Duplex/ChoreoGraph: in conversation with
Barriedale Operahouse.” 2 May 2002. Retrieved
7 November 2009 from <www.sdela.dds.nl/sfd/
frankfin.html>.

Manuscript received 9 November 2009.

Nick Collins is an experienced pianist and
computer music performer, active in both in-
strumental and electronic music composition
as well as explicit live coding. Recent concerts
have been outdoors in Mexico City, indoors
in New York, and at a planetarium in Plym-
outh, U.K. Further details, including publi-
cations, music, code and more, are available
from <www.informatics.sussex.ac.uk/users/
nc81/>.

