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Interpolating Break-Point Sets To Obtain Sound 
Transformations Distinct From a Cross-Fade  

Nick Collins   http://www.axp.mdx.ac.uk/~nicholas15/  

Introduction 

The genesis of this article can be traced to the following question: given two short 

time-domain segments of audio, are there time-domain methods for transforming 

one into the other distinct from a cross-fade? Methods of morphing in the frequency 

domain have been explored (for instance, see Depalle et al 1993, Slaney et al 1996). 

Yet, the author has found a rewarding set of transformations by considering the 

subset of time amplitude curves modeled via break-point sets. This is the domain of 

break-point interpolation synthesis (Bernstein and Cooper 1976, Mitsuhashi 1982a). 

Algorithms for the interpolation of break-point sets are investigated herein as 

pertaining to sound transformation. 

   Since break-point sets may be useful wherever two or more parameters are 

mapped against each other, the transformations can have applicability to situations 

other than time amplitude curves. For instance, a function constructed from a break-

point set could determine a center frequency versus amplitude map for a filterbank 

at one instant. As break-point sets are interpolated over time, the filter will change 

dynamically. Alternatively, break-point sets could determine surfaces, using  

NURBS or otherwise. These surfaces are transformed over time, with a one 

dimensional scan determining digital audio output, that is, dynamic wave terrain 

synthesis (Mitsuhashi 1982b, Borgonovo and Haus 1986). In the work here, we 

restrict ourselves to the case of the time amplitude curves of traditional break-point 

interpolation synthesis which will be sampled for digital audio.  

   The key-frame approach is a widely used paradigm originating in hand 

animation, especially familiar in computer graphics animation. Break-point set 

interpolation algorithms allow the interpolation of  user defined key-frames. The 
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user becomes the chief animator, and the computer automates the drudgery of 

inbetweening. We gain an automatic synthesis technique that allows immediate 

control of low-level wave shapes, whilst maintaining continuous transformation 

within sound, a quality well known as necessary for dynamic audio. As we shall 

see, most interpolation algorithms one could construct are distinct from the 

standard all-pervasive cross-fade. 

 

Break-point Set Interpolation Algorithms 

The time-amplitude break-point sets are defined within the space [0, 1] by [-1, 1], so 

are immediately scalable as floating point audio. We allow free values of abscissa 

and ordinate, though there must be only one break-point for a given value of the 

abscissa. Each break-point set must include at least two break-points at (0, 0) and  

(1, 0). This maintains continuity between successive concatenated break-point sets, 

and in audio terms, avoids clicks every period. Classic break-point interpolation 

synthesis considers an interpolation function between successive break-points. We 

differ here in further utilizing linear and cubic splines. The linear spline is 

equivalent to the linear interpolation function, but it shall be convenient to talk of 

splines including this case. The technical reason for the emphasis on splines is that 

we may add extra break-points to a spline without changing the interpolation curve 

as long as those break-points are placed exactly on the existing curve. This follows 

from the uniqueness of the spline demonstrated in (Collins 99). This property is 

vital in that we will equalize the number of break-points between two successive 

break-point set key-frames in order to interpolate intermediate break-point sets, 

whilst preserving the key-frames themselves as part of the transformation. 

   One side effect of using splines is that we must occasionally clip ordinates on the 

interpolating curve to the range [-1,1], whereas interpolating functions always reside 

within the rectangle laid by the break-points interpolated. 
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   Given the above conditions,  transformations equalize the number of break-points 

and pair up break-points between two key-frames, then linearly transform one 

break-point into another. In general, an arbitrary interpolation function could 

determine the speed of transformation independently for each pair, and the least 

distance path, that is, the linear path, could be replaced by any circuitous route.  

There are an infinity of plausible transformations, differing in the 'wildness' of the 

intermediate interpolants with respect to their begetting key-frames. 

 

Figure 1 An Example Transformation 

Figure 1 shows an example transformation. Note that even with the classic 

interpolation functions, a non linear interpolation path between break-points may 

require clipping of the ordinate values of intermediate break-points within [-1,1], or 

if break-points outside the basic square are accepted, clipping of the interpolating 

curve.  

 

Six Algorithms 

   Six algorithms are studied herein. The first three are discussed in more detail with 

an alternative method in (Collins 99). These are general algorithms which for any 

given break-point set key-frames will supply intermediate break-point sets bearing 
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a healthy relation to the begetters. The key-frames themselves will be generated at 

t=0 and t=1, where t is the interpolation parameter analogous to time taking values 

from [0, 1]. The reader should be careful not to confuse interpolation time t used for 

transformation between break-point sets with the x axis in a single time-amplitude 

break-point set.  

   We must set up a mathematical description sufficient to portray the six 

algorithms. 

Given two key-frame break-point sets A and B, we will transform A into B. Without 

loss of generality, A has a less than or equal number of break-points than B, for 

otherwise transform from B to A then reverse the time order of the  transform. We 

establish new break-point sets A' and B' that will end up with an equal number of 

break-points, and some match function, a finite 1-1 onto map pairing indices of 

break-points from A' to B'. A' and B' begin as A and B, and are gradually expanded 

within a given algorithm by the addition of break-points. The deletion of break-

points is never allowed, as the shape of the original curve would be lost. For 

splines, A' and B' must admit the same interpolating curve as A and B respectively. 

So any break-point added to A' or B', whatever the abscissa, has ordinate equal to 

the evaluation of the interpolating spline of A or B at that given abscissa. This 

guarantees the property desired (Collins 99). Because the ordinates are dependent 

on the abscissae in this sense, we need consider only the list of abscissae of A and B, 

XA and XB, ordered by increasing x. We denote the expanded lists for A' and B',  

XA' and XB' , which begin as equal to XA and XB . It is hoped that the reader will 

forgive the ambiguities in the non-rigorous presentation of this material. We will 

not consider named intermediate sets for every stage of the algorithm, but update 

the dashed sets. We must separate A from A' so that the original can always be 

referenced. We will speak interchangeably of adding abscissae to XA' and break-
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points to A'. We also write card(object) for the size of a finite object, hence card(A)= 

card(XA) is the initial number of break-points in A' or x values in XA'. 

   All algorithms will always match (0, 0) in A to (0,0) in B, and similarly (1,0) to (1,0). 

All break-point sets utilized for time amplitude curves have these break-points, so 

there is no difficulty here. It will be seen that the algorithms usually deal with these 

particular matches implicitly, or match them immediately and then consider all 

remaining break-points separately in the main part of the algorithm. 

   For the special case of monotonic match functions between general continuous 

curves, the reader might compare (Slaney et al 1996). In this paper we deal with a 

finite domain and range only, since our parameters are the finite break-point sets. 

 

 

Figure 2 Six Transforms 

    Now examine Figure 2, which shows the six transforms under discussion,  for a 

specific A and B (more properly, XA' and XB'). The circles denote the original break-
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point abscissae, which are the same for all six diagrams. The crosses denote the 

positions of added break-points. The lines denote the match functions and the 

intermediate linear interpolation of the associated x values if one imagines 

interpolation time going linearly down the page from A to B. It should be noted that 

all six transforms are distinct in their pairings and hence the intermediate 

waveshapes for this relatively simple case.  

   The transforms have been given suggestive names to help in understanding them. 

 

Cross-fade 

Let the final AX' and BX' be the union of AX and BX. Pair matching indices (the 

identity permutation). 

A little thought will show this transform is equivalent to a simple pointwise 

interpolation, and hence a cross-fade. 

 

Greatest Less Than 

Iterate through AX starting at 0. For given x 

Match x to the greatest value xB in BX less than or equal to x. If no such xB exists, add 

a break-point to B' at x, and use this to pair.  

For any abscissae missed out in BX less than or equal to x, pair it by add break-

points to A' at equal spacings of the abscissae between x and the most recently 

matched abscissa in AX.    

 

Proportional Indexing 

Let PROP= card(B)/card(A). Match (1,0) in A to (1,0) in B. Consider the remaining 

points indexed from 0. Then match the ith x value in AX to the jth= (int) (PROP*i) in 

BX, where we are taking the integer part of the calculated real (floating point) value.  

Convex hulls have been set up (examine figure 2) within which it is easy to add 



 

  7 

 

 

break-points to A' matching those x values in B missed out by the proportional 

indexing scheme. 

 

Equal Indices (with differing interpolation speeds) 

Match (1,0) in A to (1,0) in B. Of the remaining break-points, match the ith x value in 

AX to the ith in BX. There are UNACC= card(B)-card(A) values in BX unaccounted 

for, positioned consecutively just before x=1 . Add UNACC break-points to A' 

spaced linearly in x between the second highest x of AX and 1, matching them by 

increasing x to those remaining unpaired in B. Further, let the interpolation time 

(not shown on diagram) between break-points depend on the index as follows: at 

interpolation time t for index i, t in [0, 1], use t'= pow( t, i) as the interpolation 

position along the ith pair's line.      

 

Reverse Indexing (Full Crossover) 

Pair the x values at zero and one. For all remaining x in AX, pair them to the reverse 

indexed x in BX. For any remaining x in BX, pair them to additional x in A' placed 

linearly between the second highest x value and 1,  matching x increasing in A' to x 

increasing in B. Of course, x increasing in A' to x decreasing in B would be an even 

greater twist.  

 

Crossed Pairs 

Use the cross-fade scheme to set up an equal number of break-points in A' and B'. 

Now cross in pairs as many internal (0<x<1) abscissae as possible.   

 

TECHNICAL NOTE: It should be made explicit that the processes of equalizing the 

number of break-points, and of matching break-points between two key-frame 

break-point sets could be separated. If in the algorithms the addition of break-points 
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may seem to depend on the pairing of the initial break-points, it would still be 

possible to 'change the wiring' once the equalization of break-points has taken place. 

The algorithms are just some interesting demonstrations of what is possible, and 

could be quickly cross-bred with each other to produce countless variants. Use the 

cross-fade scheme then reverse index, etc. 

 

Making your own Algorithms. 

In general, the number of break-points in the two key-frames will not be equalized 

before transformation. In this case, break-points must be added or deleted at 

specific points in the transformation. This is analogous to the termination or 

introduction of partial tracks in sinusoidal modeling (for example, births and deaths 

of partial tracks in Depalle et al 1993). In the methods presented above, splines, and 

equality of the number of break-points were used so as to make sure that the key-

frames themselves were part of the interpolation. Transformations can easily be 

designed which flaunt those conditions, whilst keeping some rough character of the 

defining curves.  

   Whilst interpolation functions between successive break-points like Mitsuhashi's 

half-cosine will not preserve the key-frames in the interpolation, in practice you 

would not notice, never hearing the original  but just the interpolants. However, the 

changes you made to a break-point set key-frame may have a less honest effect on 

the interpolates. 

 

Discretisation, Aliasing and Uncontrollable Harmonics 

Because of the free abscissae, the Fourier analysis conducted by Mitsuhashi for 

linearly spaced abscissae does not hold. In general, the calculation to predict the 

spectral components from given break-points interpolated by cubic spline is too 

difficult to carry out analytically. This does not stop us using the techniques herein 
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to make interesting and novel sounds, it just limits the applicability of the technique 

for analysis/resynthesis. 

   Continuous curves will be sampled at a scan rate corresponding to a desired 

fundamental frequency. Uncontrollable prominent higher harmonics may cause 

noticeable aliasing at high frequencies, though low pass filtering of the curve prior 

to sampling could be implemented to avoid such cases if desired. 

   One practical result of great import is that crossing break-points will lead to 

concentrations of energy into the higher harmonics (and hence aliasing) as the 

proximity of break-points at different ordinates closes. This may be a desired 

musical effect. We can always choose to control this by removing break-points from 

intermediate break-point sets if they are judged too close together. We already 

specified only one break-point per abscissa, and piecewise constant functions can 

still be sampled. 

 

An Implementation in SplineSynth2 

The algorithms have been implemented in SplineSynth2, the next generation of 

earlier experiments discussed in (Collins 1999). This software synthesizer allows a 

user to manipulate break-point sets and establish key-frame sequences, all in real-

time, hearing results of changes immediately. They can severely deform key-frames 

by moving multiple break-points simultaneously, rather than the usual one break-

point at a time restriction. The highlighted break-points in the stage 2 window in 

figure 3 can be moved simultaneously relative to the mouse cursor. MIDI control 

allows 8 note polyphony, and the latency can be set as small as the soundcard 

allows (below 10mS, for perceptually immediate response). The novel part of the 

program is in the algorithms that interpolate through a sequence of any number of 

break-point set key-frames, those algorithms introduced in this text and the earlier 
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paper. A demo of SplineSynth2 (Windows PC only) should be available at the time 

of writing from the author's academic web site. 

 

 

Figure 3 Screenshot of SplineSynth2 

 

Comparison of the Six Transforms 

As a demonstration of the six transforms, figure four shows some sample break-

point transformations between two key-frames. The seven interpolated sets 

correspond to equally spaced interpolation times 0.0,  0.167, …, 0.833 and 1.0. The 

key-frames correspond to the far left and far right interpolated break-point sets and 

are shown in their original state in figure three above. The order of the six 

algorithms is as presented in this paper, from top to bottom, cross-fade, greatest less 

than, proportional indexing, equal indices (with differing interpolation rates), 

reverse indexing and crossed pairs. 



 

  11 

 

 

 

Figure 4 Comparison of intermediate break-point sets with cubic splines over 

six algorithms 

Figure five shows the corresponding heterodyne analysis of the first ten harmonics 

of the output sound of a scanned a3 (220 Hz) over the six algorithms. The keyframes 

are as in figures 3 and 4, and the cubic spline provides the interpolating curve. The 

amplitude is mapped under log(log(amplitude)) to make more subtle differences 

noticeable. They are all distinct, proving that the transforms are all distinct from one 

another and the cross-fade. Note that algorithms that cross break-point interpolation 

paths (i.e with a non-monotonic match function) can cause a single wavetable of 

silence, if break-points pile up directly on top of one another and are not allowed 

through in that cycle. As might be expected the reverse indexing causes the most 

aural clutter. 
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Figure 5 Comparison of the heterodyne analysis of one hundred interpolating 

break-point sets over the six algorithms, with log(log(amplitude)) as intensity and 

time versus frequency on the axes. 

 

Further work and conclusions 

SplineSynth version 1 already included a mode for the filterbank control, though 

further development would be desirable. The 'NURBSSynth' would be a much 

greater task. A 'Generalized Transformation' software package for defining one's 

own break-point set transformations would be extremely useful. A graphical 

interface would allow one to establish match functions, birth and death of control 

points during a transformation, interpolation rates and other facets of animation. 
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Such packages already exist to control animation sequences in the computer 

graphics world, but not to my knowledge, for audio purposes. 

   It would be gratifying to control grain shapes for granular synthesis over time 

from key-framed break-point interpolation synthesis. We may also control 

overlapped waveshapes in this context. To avoid the exact repetition of a sound 

with each trigger, a slight random perturbation of break-points for each new note 

might give a more dynamic system with a controlled but subtly varying sound 

output. 

   This article dealt with the introduction of transformation algorithms for  

break-point sets over time, with a view to making dynamic sounds, and timbre 

transformations distinct from the crossfading of waveshapes. I hope the reader is 

inspired to try out their own break-point set transformations to see what new 

sounds and transformations they can produce. 
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