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ABSTRACT

Outlined in this paper are a number of sources of evi-
dence, from psychological, ethnomusicological  and engi-
neering grounds, to suggest that current approaches to
computational beat tracking are incomplete. It is con-
tended that the degree to which cultural knowledge, that
is, the specifics of style and associated learnt representa-
tional schema, underlie the human faculty of beat tracking
has been severely underestimated. Difficulties in building
general beat tracking solutions, which can provide both
period and phase locking across a large corpus of styles,
are highlighted. It is probable that no universal beat
tracking model exists which does not utilise a switching
model to recognise  style and context prior to application.
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Note

The author acknowledges that much of this work is specu-
lative, and tries to suggest areas where future experiments
may help to resolve matters. There are intimate ties to cer-
tain issues in signal processing, particularly transcription
and auditory scene analysis, that there is not room to fully
explore. Beat tracking in this article means the determina-
tion of both period and phase (tempo and exact beat place-
ment). For reasons of space I have also left out certain sig-
nal processing and experimental details that will be more
properly covered in my forthcoming PhD thesis, to be
submitted summer 2006.

EVIDENCE  FROM PSYCHOLOGY AND
ETHNOMUSICOLOGY

`Anticipation can only come from familiarity with the
norms of a musical style, providing another motivation for
beginning to include a base of musical knowledge in com-
puter programs.'  (Rowe 1993, p117)

Musicians are often surprised when the difficulty of
programming a computer to tap along to the beat of music
is mentioned to them. To any adult participant in a given
culture, moving in time with their music is so natural an
ability that it is easy to forget that it is not a given in early
development, but usually becomes established by the age
of four (Drake  et al. 2000, Drake and Bertrand 2003,
McAuley and Jones 2005).

The human experience of rhythm is not an exclusively
Western phenomena, yet Western musical tradition places
many weighted terms in the path of the analyst. Clayton
posits `Metre as commonly understood in the West is
clearly not a universal concept, nor is it a phenomenon
observable in all world musics' (Clayton 2000, p 41). He
notes that the well-formedness rules for metre of Lerdahl
and Jackendoff's theory (1983) cannot accommodate North
Indian tal patterns. The inadequacy of some of GTTM's
rules as cultural universals is independently raised with
respect to the music of the Bolivian campesinos by Stobart
and Cross (2000). They study downbeat location in the
music of the Northern Potosí of Bolivia, finding that what
seems to an anacrusis to the authors' Western training is in
fact the downbeat itself. Temperley (2001), in his computa-
tional implementation of GTTM, revises some of the rules
in a treatment of African rhythm, showing that the basic
idea of well-formedness and preference  rules can be fruit-
ful.

Yet there are at least three theories of metre concerning
African rhythm. Arom (1989) finds an isoperiodic pulse
level and subdividing operational value (tatum) at the heart
of Central African polyrhythm, rejecting though any sense
of strong and weak accentuation within a cycle as arising
from hierarchical metre. Agawu (1995) meanwhile argues
for a conventional metrical backdrop to the Northern Ewe
music of Ghana. Magill and Pressing (1997) describe the
nonisochronous timeline as the the best fit for a West Afri-
can drummer's mental model of polyrhythmic production.
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A resolution of such a proliferation of metrical theories
is explained by Justin London's many-metres hypothesis
(London 2004) which contends that there are a multiplicity
of both isochronous and non-isochronous (though pseudo-
isochronous) organised metrical structures, each of which
must be learnt in a given context. The same I-metre or NI-
metre may also vary in its cognitive evocation as tempo is
varied, due to the interaction of processing considerations
for the different levels of pulsation, particularly with regard
to a fundamental minimum treatable IOI unit around 100
milliseconds, and the need for beats themselves to be at
least 250 msec.

Some non-isochronous metres may have arisen through
the placing of uneven dance steps, a short-short-long (per-
haps a step-step-turn) corresponding to a  2+2+3, or con-
tentiously dropping any insistence on quantisation,
2+2+2.9. An underlying tatum (subdivisor, fastest opera-
tional unit) is not necessarily implied in a short-long dance
steps view, which would undermine the cognitive existence
of London’s n-cycle, though not of a master periodicity per
se. Norwegian Hardanger fiddle music as well as much
Aksak (Eastern European) dance music show these `choreo-
graphic’ (Brailioiu 1984, p136) tendencies. The weakest
part of London's theory is possibly related to the NI-
meters, which are usually maximally evenly spaced within
an n-cycle even if they cannot be made perfectly isochro-
nous. Examples like Hardanger fiddle show that listeners
may simply be familiar with certain patterns with larger
scale periodicity, subdivided in a way intimately tied to
bodily motion in the dance, though not necessarily mathe-
matically neat. The influence of Western music theoretic
constructions does tend to apply quantisation, or force the
positing of an n-cycle or tatum, where this may not be nec-
essary to explain the phenomena, and some of the contro-
versy is shown by the competing characterisations of cer-
tain African rhythmic constructs mentioned above.

Thaut (2005, p54) accepts the validity of multiple met-
rical constructs in explaining the world's rhythms: `Because
very different neurological networks, which seem to be
fairly independent of each other in circuit architecture,  sub-
serve different components of rhythm, hierarchical  rhyth-
mic structures, such as those in Western musical language
systems, may be based more on the particular structural
developments in the syntax of musical languages specific
to certain musical cultures than on a culturally independent
intrinsic function of a musical biology'. It may be possible
to claim that there is no underlying isochronous pulse or
tatum in some music, just as some Indian tal admit a
pulse, but involve much longer cycles than typical Western
metres. Whilst Drake and Bertrand (2003) posit musical
temporal universals, in particular the predisposition to-
wards regularity and active search for regularity, a more
general version of such rules may have to be allowed which
does not assume isochrony at a short time scale, but larger
scale regularity of reference pattern. Further cross-cultural
study is needed to resolve the status of pulse especially,
and brings us to a consideration of scheduling and percep-
tual clock mechanisms. If the outer periodicity can be long,
how many reference points might be needed in a cycle for

musical timing purposes? Must these be isochronous, or be
constrained to simple integer ratios?

Cultural conventions and stylistic differences in the
treatment of metre and pulse seem to be corroborated by the
psychological literature and ethnomusicological accounts.
In further reports, Snyder et al. (2005) show that familiarity
is important for metre tracking in a tapping study on Bal-
kan non-isochronous meter. Jehan (2005), in a computa-
tional study, recently demonstrated the utility of machine
learning based on event timbres for downbeat induction in
a context, Brazilian Maracatu dances, where many Western
listeners were unable to find the appropriate ground truth.
Such culturally specific conventions are a clue that we have
no innate general beat tracking facility, and that training is
required to resolve particular metrical structures. Since the
resolution of a beat level may co-depend on aspects of the
metrical formation and basic patterns, in turn influenced by
instrumentation and other timbral markers, phase determi-
nation for computational beat trackers is hostage to poten-
tially high level cultural factors.

EVIDENCE  FROM OBSERVATION
MODELS

Scheirer (1998), in a much cited paper, makes the
claim that amplitude modulated noise in six bands can
evoke the same beat percept as the original signal. This
claim is taken as evidence to support the general utility and
psychoacoustic relevance of his computational beat tracker,
based on a similar signal processing frontend. Like most
current generation trackers, the observation model is at-
tuned to changes in energy features, in a limited number of
bands.  As reported at RPPW last year (Collins and Cross
2005) an experiment was run to reproduce Scheirer's study,
by contrasting subject performance on both original CD
quality and vocoded versions of real polyphonic music
signals in a tapping paradigm. Data was sought on syn-
chronisation accuracy, with a subsidiary interest in regis-
tered reaction times.

This experiment demonstrated a statistically significant
change in performance of beat tracking across signal quali-
ties, with Scheirer's six-band vocoding reducing the abili-
ties of subjects to synchronise effectively. It is thus con-
tended that Scheirer's multi-band frontend approach on its
own is not sufficient to model human musical ability.
More advanced and integrated timbral information of indi-
vidual events is a contender for the true mechanism by
which humans learn and respond to music; six bands is
certainly a simplification of the rich information channels
from 3500 inner hair cells!

It has actually been recognised by engineers that such
short-term energy change frontends are most appropriate to
percussive music, and indeed, alternative mechanisms have
been suggested to cope with situations where longer range
tonal information may be more important than transient
cues. Goto (2001) tried to take chordal information into
account for `music without drum-sounds' when rating beat
tracking hypotheses, and Hainsworth (2004) uses a longer



ICMPC9 – International Conference on Music Perception and Cognition - Proceedings

window chord detection principle as a complement to per-
cussive event detectors, in particular for the consideration
of choral and classical music; both of these authors, how-
ever, run the chord detection in parallel with percussive
onset detection processes. Davies and Plumbley (2005b)
compared frontends to a common autocorrelation  model.
The most successful was founded in the complex domain
onset detection principle, which utilises tonal information
implicitly via instantaneous frequency (change of phase in
FFT bins) concurrently with percussive (change of ampli-
tude). Interestingly, by allowing the detection function to
be genre, piece or even frame specific, Davies could im-
prove the tracker performance on a 100 piece, 5 genre cor-
pus (a subset of the Hainsworth database) by 15\%. The
author, who converted the Davies model to a real-time im-
plementation for concert use (a SuperCollider UGen called
AutoTrack) also found that the complex domain frontend
was superior to a pure energy transient based model. How-
ever, neither the non-causal non-realtime Davies model nor
AutoTrack could be made to perform better than an overall
F-measure of 66% and 47% respectively over the 200 piece
Hainsworth beat tracking test database, on stringent condi-
tions of beat matching. Whilst drum-heavy genres were
effectively tracked, performance tailed off for classical and
folk idioms, suggesting that further work would have to be
done to tackle these contexts. A general observation model
may not support all styles.

The issue of the best frontend has been raised by
Gouyon (2005) with an exhaustive comparison of
framewise features and possible algorithms for the integra-
tion of information arising from feature sets, by combina-
tions both before and after periodicity detection functions
are generated. Unfortunately, Gouyon's evaluation is cast in
terms of tempo induction, and does not consider beat. This
is problematic, for the determination of the phase is per-
haps the most critical facility of human beat tracking re-
quired for musical interaction. He also considers features
that may best relate to beats as predictors, considering fea-
ture values on beats and non-beats over a large annotated
database. The single best feature varies with genre, corrobo-
rating Davies' work and common sense, Gouyon (2005,
p99) admitting `different sets of features would probably be
relevant depending on the musical style'. It might be ar-
gued that the use of single frame features (and their first
order differences implicitly involving two successive
frames) is not so perceptually relevant as the scale of
eventwise features,  timbral sound objects and their role in
a stylistic context, which are only indirectly acknowledged
via the frame values.

Tristan Jehan's aforementioned method of downbeat
induction (Jehan 2005) uses such segments discovered via a
Bark subband frontend. He provides an early example of a
machine learning study on resolving the location of the
downbeat, and his method is inherently style-specific. It
could be possible that downbeat estimation is the special
stage requiring training, and that discovery of a basic beat
level can be carried out by standard general signal energy
methods. Yet the psychological aspects of metre would
suggest situations where beat and measure, or master perio-

dicity and timeline pattern, must be co-estimated from the
observations.

The author's experience, in preparing systems for con-
cert use, has engendered a strong bias to particularisation,
in specialising systems to the task they face. General beat
tracking models may be usable, but can be improved by
giving them frontends appropriate to the situation. In
evaluating a recent system designed to track a baroque duo
of recorder and harpsichord, and which had specialised on-
set detection mechanisms for those instruments, the Davies
non-realtime beat tracker was improved by 16% and the
AutoTrack realtime beat tracker by 4% in evaluations by
using the specialised observation model, rather than the
complex domain onset detection.

EVIDENCE  FROM RE-SYCHRONISATION
TIME

Periodicity detection mechanisms in beat trackers tend
to utilise some form of search procedure, commonly via an
autocorrelation or comb filtering (Gouyon 2005, p104), on
a 3-6 second window of feature data. Ideally assuming no
tempo deviation within this window, an induction of the
period is more stable for longer windows: the Davies and
Plumbley (2005a) model uses a six second window, cover-
ing 8 beats at 4/4 for many tempi. The disadvantage of
larger windows is a slower reaction time, and this may
itself provide evidence that the assumed mechanisms of
beat tracking are distinctly non-human. In experiments on
re-sychronisation time reported last year (Collins and Cross
2005) reaction times of 1-2 seconds were commonly seen.
Further, by rating cases where subjects could be said to
provide a valid re-sychronisation at all, humans signifi-
cantly outperformed existing beat tracking models on an
`obstacle course' of piece transitions. By splicing together
varied piece extracts in 6 second segments with jumps of
phase that forced realignment and differing tempi to con-
found tempo priors, an evaluation method for computa-
tional beat trackers was exhibited which clearly differenti-
ated computer from human.   

Table 1
Subject Mean

Score
Mean Reac-
tion Time

Successes

Beat Musician 0.308 1.369 19

Average Subject 0.604 1.686 19

Davies and Plumbley
(2005a) non-causal

0.737 0.956 14

Klapuri et al. (2006) non-
causal

0.756 1.788 13

Klapuri et al. (2006) causal 0.815 2.094 13

Scheirer (1998) 0.886 2.278 10

AutoTrack 1.168 2.697 12

Table 1 gives a comparison of human and beat tracker
performance on the experimental test set. Computational
beat trackers well-known in the literature ran the obstacle
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course. There were 20 extracts spliced together, with 19
transitions, and measurements were given after each transi-
tion of how well a subject resynchronised (the score, lower
scores being best) and how quickly (the reaction time). The
last column is critical, in that it shows how many of the
transitions were accurately  responded to.

The computational algorithms are slower to resynchro-
nise, and fail to re-sychronise after some transitions. A few
reaction times are rather suspicious- it is quite possible that
a few transitions may have been coped with by a lucky
prior state of the tracker.  Non-causal algorithm reaction
times are of course to be taken with a pinch of salt.   

It would be unfair to say that in reaction time humans
are greatly faster than computational beat trackers, but hu-
mans are certainly more reliable, even non-musicians far
outperfoming the computer models.  

At the very least, perhaps humans have an advantage in
spotting the transitions themselves, perhaps through recog-
nising characteristic instruments, playing styles and mis-
alignments of key or other timbral-harmonic features. This
is a reminder of the `radio-dial' paradigm explored by Per-
rot and Gjerdingen (1999) where subjects could distinguish
genre even from half second extracts. Hainsworth (2004)
has suggested timbre perception as an essential early com-
ponent of any transcription model, and Koelsch (2005), in
a neuroscientific review, places timbre determination early
on in auditory processing (within 100 milliseconds).  

How could this be effected computationally? Follow-
ing the relatively crude framewise (10 millisecond spaced
FFT frames) features typical of music information retrieval
work, broad timbral measures accumulated from those
frames might distinguish sections. An overall measure of
harmonic information and timbre by spotting novel spectral
content in non-transient regions was utilised to create a
detection function with a three second delay in causal op-
eration. Re-initialisation of a beat tracker was forced by
positive detections peak picked from this function. The full
signal processing details are in my forthcoming PhD the-
sis, to be submitted this summer.

Table 2
Subject Mean

Score
Mean Reac-
tion Time

Suc-
cesses

Davies and Plumbley
(2005a) non-causal given all
transitions

0.585 0.2 16

Davies and Plumbley
(2005a) non-causal given
discovered transitions

0.666 0.52 15

The Davies model was adapted to reset the current
working period hypothesis and phase prior at selected beat
induction steps, namely, at those points given by transition
data. Table 2 shows a small improvement in tracking per-
formance for the Davies beat tracking algorithm when it is
apprised of transition locations in taking the obstacle
course test. Even with perfect knowledge of transitions, the
algorithm still fails to show adequate reaction to three tran-

sitions. This is no doubt because the significant events
within these sections are not revealed by the onset detection
frontend, and forcing a beat tracker recalculation at the ap-
propriate moment will not change the frontend's signal
processing capabilities.

It could be argued that some difficulties of detecting
appropriate events in the beat tracker frontend are also diffi-
culties of the event analysis implicit in the transition detec-
tor.  The relative simplicity of the transition detection
process can be linked to the relative simplicity of the audio
signal analysis on which the beat tracker operates, com-
pared to the clarity of a human's understanding of objects
relevant to beat perception. Improvements in observation
frontends, prioritised rather than tracking models, seem to
be demanded by the obstacle course test.   

Whilst a great improvement to the beat tracking
commensurate with human performance has not been exhib-
ited, the fact that tracker performance could be improved at
all is sufficient justification for the investigation. It is
highly apposite if it is accepted that style-specific knowl-
edge is essential for beat tracking to consider mechanisms
for identifying stylistic character early on in processing, so
as to select a specialised onset detection frontend and beat
tracker appropriate to the task. It would be pertinent to con-
sider what the music information retrieval community
could provide to this sort of multistage algorithm.  

There are also similarities between this work and the
goals of MIR in the analysis of sections within a composi-
tion, and music similarity measures between pieces based
in various audio descriptors (Pampalk 2004, Berenzweig at
al. 2003, Aucouturier 2002). However, the application de-
scribed here is more like a between-piece differentiator suit-
able for online application. The transition detector must
trigger if the radio dial has just been jogged; the obstacle
course is not a single realistic piece of music in itself, and
the transitions are not known a priori. It may be possible to
adapt more advanced piece discriminating functions from
the MIR literature to compare small windows of audio ei-
ther side of a potential transition, in a causal fashion,
though some music similiarity measures dependent on sta-
tistics across whole pieces will not be appropriate for spot-
ting transitions between short extracts.  

The extent to which framewise statistical methods
could fully solve an `obstacle course' problem remains to
be seen. The author's intuition is that eventwise (composite
framewise) rather than simple framewise features may prove
most apposite to matching human performance, our learnt
sound objects and their horizontal and vertical interactions
in patterns being implicated in human beat tracking. There
is no conclusive proof that a low-level feature basis with
machine learning could not cope, however, and events are
implicit in the combination of feature frames; perhaps the
most important contention is that longer term properties
(continuities) of sounds than 20 milliseconds are to be
taken into account (Kapanci and Pfeffer 2004, Collins
2005). However, by even implicitly raising the relation of
style to beat tracking performance, we are forced to accept a
greater role for learnt schema in the process.  
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CONCLUSIONS

Beat tracking models with adaptive frontends may
form the next generation of computational systems. Such a
dependence on context is indicative of critical timbral-
stylistic factors in beat tracking, as opposed to an unrealis-
tic expectancy of a general beat tracking solution running
from a single universal frontend.  

Speculatively, perhaps the human superiority over
state-of-the-art algorithms is due to an eventwise rather than
instantaneous framewise formulation of signal features? If
the recognition of context is essential, the separation of
streams based on instrument, and the re-integration of in-
strumental lines based on style may provide a better model.
Styles may be indicated by an aggregate of timbral cues
relatively early on in processing, assisting the selection of
prior, and explaining the fast reactions of human subjects
for re-sychronisation after discontinuity or as musical per-
formers in ensemble interactions. Knowing that some
events are designations of the downbeat, that the enclosing
periodicity of a cycle is marked out by particular patterns
on particular instruments or combinations of instruments is
crucial to fast responses, for as long as enough context is
granted, one can infer the existence of the rest. A partial
match of markers to an instrumental situation is sufficient
to then predict beat locations.  An eventwise view, requir-
ing stream separation and instrument recognition (even
without assuming perfect extraction), makes demands on
the signal processing technology that go far beyond exist-
ing onset detection frontends employed in current beat
trackers. And where onset detection itself can be shown to
utilise learnt categorisations (Windsor 2000, Bregman
1990), the style dependence is only increased.

How might we further investigate such contentions ex-
perimentally? Aside from following up (Collins and Cross
2005) with larger scale experiments, one might imagine the
comparison of pieces built without timbral cues with the
full event information. These could be synthesised via
scores either with a set of appropriate instruments, or just
as an aggregate pattern on a single instrument. One could
then measure subject tapping behaviour, in particular, the
ambiguity of the location of the downbeat and the appro-
priate (stylistic conventional) metrical level. As reproduc-
ing the Scheirer experiment suggested, patterns without
sufficiently discriminating characteristics for events become
more difficult to resolve. In particular, such experiments
can highlight the inadequacy of generalising from tapping
studies with bare (and usually metronomic, isochronous)
stimuli to polyphonic audio.  

To attempt to answer London’s (2004, p158) question
of how we learn meters: perhaps we tag meter types with
the instruments typically involved. This might extend the
`many meters hypothesis' to further include timbral factors
critical to stylistic familiarity as differentiating metrical
settings. There may be experimental tests using non-
standard arrangements.  

In this paper I have tried to cast some doubt over the
long window periodicity detection, and framewise feature

frontends of current generation computational beat tracking
models, from a number of sources of evidence. If we are to
accept the multiplicity of metrical constructs in the world,
we must model the training encultured listeners undergo in
recognising and synchronising with contexts. In particular,
the building of machine  musicians able to interact in real-
time performance is assisted by a practical specialisation in
styles, without the expectation of universal beat tracking
solutions.

`The human construct that we call our music is merely a
convention- something we have all evolved together, and
that rests on no final or ultimate laws.' (Reich 2002, p131)
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