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Abstract 
 
This paper examines some original aspects of modern music theory associated with 
measures of uniqueness for pitch class spaces of any size. Certain decompositions 
shall be defined for the set classes of those spaces based on the interval vector and its 
generalisations, the M-class vector and  polychord content vector. From these, a 
general Z relationship is developed. It subsumes the Z pairings with respect to Forte’s 
interval vector in the 12 note chromatic pitch class space with inversion and 
transposition set classes. The results suggest notions of a “minimal basis” for a given 
pitch class space with respect to a given set class equivalence relation. Uniqueness 
measures are outlined for these musical spaces.  
   Finally, similarity relations are introduced for set classes founded on this work and 
that of many other recent music theorists. 
   The author seeks to allow understanding without overuse of mathematics; but all 
proofs are provided. The mathematical approach will follow that of David Lewin’s 
notions of embedding (1987). 
 
1 Background 
 
David Lewin (1977) was the first to generalise the notion of Forte’s interval vector to 
vectors representing the decomposition under abstract inclusion of a set class into 
other set classes. His ideas of embedding are critical herein, and are expounded at 
length in his book, Generalised Musical Intervals and Transformations (1987).  
   Measuring set equivalence is another important theme of music theory mathematics.  
One of the best recent paper on the subject is arguably by Isaacson (1990). Certainly, 
his ideas are followed in this paper. Morris (1987) provides more background on the 
topic, and is a worthwhile starting point for modern music theory. Block and Douthett 
(1994) reveal another thread in this work. However, there are increasing concerns 
about the use of similarity indexes in analysis (Demske 1995). A recent approach is to 
introduce saturation measures founded upon fuzzy set theory (Buchler 1997). 
   Z sets are mentioned in multiple sources. They are a fascinating side effect of the 
intervallic decomposition of set classes. Set classes, distinct according to inversion 
and transposition, can still have equal interval vectors. Recently, Stephen Soderberg 
(1995) has provided mathematical tools for discovering Z pairs or even triples or 
worse. He credits Lewin with the discovery of Z triples in 1982. 
   Decompositions into those set classes with representatives of cardinality three have 
a special place in modern music theory due to the ideas of genera (Forte 1988). Music 
Analysis Vol 17, No 2 (1998) provides a glimpse of the controversies in this field of 
analysis. However, the mathematics of the genera constructions are distinct from the 
decompositions studied within this paper. The genera are historically motivated 
analysis tools. This paper will regard the set classes as a mathematical subject area. 
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Musical use follows from the heightened understanding of the underlying 
mathematics. 
 
2 Mathematics 
 
Whilst the work herein stands within the framework of Lewin’s Generalised Interval 
Systems (GIS), the practical examples and commentary will be for the cyclic equal 
tempered pitch class spaces.  
   Given GIS (S,IVLS,int), and a group of operations CANON on S, an equivalence 
relation is naturally implied. 
   For the pitch class spaces, the group CANON of operations will be the set of all 
transpositions and inversions, that is, the interval preserving operations. With respect 
to CANON, the equivalence classes are the standard TnI set classes (Morris’s 
notation). 

2.1 Definition COMB(i,j)  
This is the number of ways of choosing j elements from i without regard to order. It is 
the standard combinatorics combination operator: 
 
COMB(i,j)=   
 

2.2 Notation E(p)     
The cyclic equal tempered pitch class space of order p will be denoted E(p).  
 
   E(12) is the standard chromatic pitch space for Western music. Mathematically, 
E(p) is often considered as the cyclic group Zp.  

2.3 Notation X, /X/ (after Lewin) 
We write X for a (pitch class) set, /X/ for an equivalence class (set class) containing X  
 
   /X/ is generated by X under a group CANON of operations. /X/ only makes sense 
on the understanding of a group CANON; this requirement is henceforth assumed 
implicitly. 

2.4 Definition EMB(X,Y) (after Lewin 1987: 105 5.3.1)  
Given sets X,Y the embedding number of X in Y, EMB(X,Y) is the number of forms 
of X (i.e. members of /X/) that are included in Y.  
 
   Lewin further defines EMB(/X/,Y), EMB(X,/Y/) and EMB(/X/, /Y/) in the natural 
way, and deals with the issue of their well-definition. For instance, for EMB(/X/, /Y/): 
Given any X belonging to /X/ and Y belonging to /Y/, EMB(/X/, /Y/)= EMB(X, Y).   

2.5 Definition M-class, M-note set class, M-set (M a positive integer) 
The synonyms above all refer to a set class whose representatives are of cardinality 
M. 
 
   The cardinality of the set class itself is not the same as the cardinality of its 
members. The set class cardinality measures the size of the equivalence class.  



2.6 Definition card(S) 
Given any set S, card(S) is the cardinality of the set. 
 
   Therefore, by the comments above, card(/X/) is not the same as card(X). 

2.7 Definition M-class vector (after Lewin 1987: 106 5.3.3)  
By the “M-classs vector of Y” we understand the function EMB(/X/,Y) as the variable 
/X/ runs through the various set classes whose members have cardinality M. 
 
   That is, let /X/ run through the M-classes of our GIS. We can begin to compare sets 
on the basis of their M-class vectors by comparing values of EMB(/X/,Y) for differing 
Y.  

2.8 Notation M-vector, M[X] where X is a set 
The above synonyms are used as shorthands for the M-class vector 
 
Example The 2-class vector in E(p) is Forte’s interval vector. The 3-class vector is the 
trichord vector mentioned more rarely in the literature. Using Forte’s standard list of 
set classes of E(12), 3[4-1] = [220000000000]. There are 12 entries in this 3-vector to 
correspond to the 12 possible 3-sets of E(12); those 12 3-class sets are ordered 3-1, 3-
2,…,3-12 for the vector. See Appendix B for further information on the ordering of 
set classes for E(p).  
 
Note. The M-class vector should have a finite number of non-zero entries as long as Y 
is finite. It will have a finite number of entries if there are only a finite number of M-
classes, and this is the case for all E(p). The finiteness property is the origin of the 
term vector in the above, for the embedding data is an ordered tuple of positive 
integers. 

2.9 Definition M-class decomposition, M-decomposition (M a positive 
integer) 

Let the synonyms above refer to the multiset MS of set classes generated by the M-
class vector in the following way. For each entry of the M-vector allow that number 
of copies of the associated embedded set class /X/ into MS. 
 
Note The decomposition (the multiset) is finite where Y was finite. 
 
   The decomposition is a little intimidating mathematically, but it can be thought of as 
deconstructing a set Y into some particular constituent parts. Because of the abstract 
inclusion embodied by EMB(/X/, Y), we get an abstract decomposition, and a 
multiset. If we had taken EMB(X,Y) for all  X of cardinality M, we would have a 
more concrete decomposition (just a set of subsets); but a less theoretically interesting 
one.  
   We can finally define the Z relation. 

2.10 Definition Z relation (Forte 1974, reformulated for GIS) 
Given sets X and Y, X and Y are in the Z relation iff the 2-class vectors of X and Y 
are equal. We write X Z2Y. 
 



   Forte’s Z relation holds between distinct set classes. However, it is recast here in a 
more general form for sets. A set can be in the Z relation with itself. This is so that the 
Z relation is an equivalence relation. It partitions the subsets of the musical space into 
regions sharing the same 2-class vector.  
   To write the definition for set classes, simply replace X by /X/ and Y by /Y/ in the 
definitions pre- and post-ceding. The Z relation can be applied as an equivalence 
relation on the set of set classes by the well-definition of EMB.  
 
   The Z relation can be immediately generalised. 

2.11 Definition Z relation with respect to M-decomposition 
Given sets (set classes) X and Y, X and Y are in the Z relation with respect to M-
decomposition iff the M-class vectors of X and Y are equal. We write X ZMY. 
 
   Again, fixing M, we can generate equivalence classes according to the Z relation 
with respect to M decomposition, of sets or set classes. 
  
   It is profitable to generalise the idea of the M-class vector as well. 

2.12 Definition C-vector  
Let C be an ordered set of equivalence classes of S, where S is the set of members of 
the GIS. Denote C= {/ci/: i e I} where I is some ordered indexing set. Given set Y, the 
C-vector of Y is defined as 
 
C[Y] = {EMB(/ci/,Y): i e I} 
 
  The C-vector represents the decomposition of a set Y into an arbitrary set of set 
classes. 
 
Example in E(12) Let C= {2-1, 2-2, 3-1}. Then C[4-1]= [4,3,2]. 
 
   This generalisation gives birth to the polychord content vector very rarely indicated 
in the literature (one mention is in Block, Douthett 1994). The way it is presented here 
is very general because the indexing set is not necessarily finite. 

2.13 Definition C-decomposition  
The multiset derived in the natural way from the C-vector.  
 
   To obtain the M-decomposition from the C-decomposition, simply take C as the set 
of all M-classes. 
 
   The Z relation comes along for the ride: 

2.14 Definition Z relation with respect to C-decomposition. 
Given sets X and Y, X and Y are in the Z relation with respect to C-decomposition iff 
the C-vectors of X and Y are equal. We write X ZCY. 
 
Example. In E(12), let C be the union of all the 2-class sets (the dyads) plus the 3-set 
3-1. Then the C-vector has 7 entries. With respect to C decomposition, 4-15 and 4-29 
are in the Z relation. For 4-15 Z2 4-29, and EMB(3-1, 4-15) = EMB(3-1, 4-29) = 0. 



2.15 Definition ZPARTNERS(C,X)  
C a set of sets (set classes) , X a set (set class) 
ZPARTNERS(C,X) is the equivalence class of the relation ZC on the musical space S 
of a GIS (set of equivalence classes of S), containing X (/X/).  
 
   This definition holds separately for sets and set classes, though the case of set 
classes is naturally inferred. If we deal with set classes, ZPARTNERS(C,/X/) is a set 
of set classes; if we deal with sets, ZPARTNERS(C,X) is a set of sets. 
   ZPARTNERS(M,X) is defined analogously for the special case of the M 
decomposition. 
 
Examples 
In E(12) card(ZPARTNERS(2,/X/)) for all /X/ is at most 2. So we only talk of Z pairs. 
Soderberg (1995: 98) demonstrates a Z-triple in E(16):  
card(ZPARTNERS(2, /{0,1,2,5,8,10}/ ) = 3. 
 
   We now have enough of a framework built up to investigate some properties of the 
sets ZPARTNERS(M,X). 
 
3 Nested Z Partners 

3.1 Proposition  
Suppose two sets X,Y have different M-class decompositions, M>=2. Then they have 
different (M+1)-class decompositions. 
Proof. The proposition is proved in Appendix A. 
 
   We must assume that the (M+1)-class decomposition can be taken. So card(X) and 
card (Y) are greater than or equal to M+1. 
   The logical equivalent is: 

3.2 Proposition  
Suppose two sets have the same (M+1)- decomposition, M>=2. Then they have the 
same M-decomposition. 
  
   By recursion these propositions imply: 

3.3 Proposition  
If the N-decompositions of sets X,Y are the same, then all M-decompositions where 
2<=M<=N are the same. 

3.4 Proposition  
If the N–decompositions of sets X,Y are different, then all M-decompositions for 
M>=N are different, where M does not exceed X or Y’s cardinality. 
 
These propositions are powerful, for they give a nested structure to the sets 
ZPARTNERS(M,X) for varying M. 

3.5 Corollary  
Given X, 1<M<=card(X), ZPARTNERS(M,X) is a subset of ZPARTNERS(M-1,X). 



 
Proof 
If Y belongs to ZPARTNERS(M,X) then the M-decompositions of Y and X are equal. 
Hence, by the above propositions, the (M-1) decompositions of Y and X are equal, 
and Y belongs to ZPARTNERS(M,X).    QED 
 
The nesting of ZPARTNERS(M,X) sets will form a basis for measuring the 
uniqueness of a set X with respect to M-decomposition. 
  
   For now, let us consider a more practical question. It is an interesting fact of E(12) 
that Z partners with respect to 2-decomposition exist. But all 3-decompositions are 
unique. Are there any grounds for the following conjecture? 

3.6 Conjecture  
Let E(p) be an equal tempered pitch class space, p>3. Then the M-decompositions 
(into TnI set classes) for p>=M>=3 are unique.  
 
   It turns out that there are Z multiples for 3-decompositions. The first example 
revealed by computer assisted search is in E(18). 
 
Conjecture Counterexample: 
set class 1 representative : 0 1 4 5 6 7 8 10 12 
set class 2 representative:  0 1 2 3 5 6 7 9 13 
These set classes share the 3 vector 
 
[355 354 562 544 342 212 221 241 241] 
 
there being 27 3-sets in E(18). The ordering of the 3-sets is that determined by the 
computer search. See Appendix B for details of the computer search program. 
 
   It is expected that there is no M for which an M-decomposition uniqueness theorem 
holds across all E(p). Computer searches have been implemented up to and including 
E(24), but 4-set decomposition uniqueness has yet to be broached. 
   If we wished to search out further counterexamples, in practical terms, the 
propositions are very applicable. Suppose we seek a 6-decomposition Z pair. Then the 
pc sets solving this will also be exhibits of 5, 4,3 and 2 decomposition Z pairs. 
   Appendix C briefly discusses the failure to prove this conjecture. 
 
   There is a much weaker uniqueness result that can be proved, though not for general 
GIS. 

3.7 Proposition  
Let the GIS be E(p), p>=3,  with the TnI set classes. Given set X such that  
3 <=card(X), ZPARTNERS(card(X)-1,/X/)={/X/}. 
Proof  Appendix A 
 
   In the sequel, this proposition gives an upper bound on the uniqueness measures for 
E(p). It guarantees that the chain of nested subsets ZPARTNERS(M, /X/) will become 
a trivial set before ZPARTNERS(card(X), /X/). It is an open question whether this 
bound can be improved. 



 
4 Uniqueness Measures on Sets, Spaces and Minimal Bases 
 
This section includes some measures of uniqueness, given practical application for the 
spaces E(p). However, these are not the only measures of worth that might be 
constructed from the material so far. 

4.1 Definition Uniqueness of sets 
Given set X find the least positive integer U such that 
card(ZPARTNERS(U, X))= card(/X/) 
 
   This can be specialised for set classes 

4.2 Definition Uniqueness of set classes 
Given set class /X/ find the least positive integer U such that 
card(ZPARTNERS(U, /X/))= 1 

4.3 Proposition  
Given set X, the uniqueness of X as a set matches the uniqueness of its set class /X/.  
 
Proof 
card(ZPARTNERS(U, /X/))= 1      iff 
/X/ is in the ZU relation only with itself     iff 
The representative X is in the ZU relation only with all other X’ in /X/  iff 
card(ZPARTNERS(U, X)= card(/X/)        
           QED 
 
   We can speak unambiguously of the uniqueness of a set X or set class/X/.  
 
   It is now possible to define the uniqueness of  a GIS according to the set uniqueness 
measure. 

4.4 Definition Uniqueness of a GIS (S,IVLS,int) according to the ZM 
relation 

Uniqueness U((S,IVLS,int))= supremum { u(X) : X ⊂ S}where u(X) is the 
uniqueness of a set X. 
 
   By proposition 4.3 U( (S,IVLS,int) )= sup { u(X) : X ⊂ S}=  
sup {u(/X/) :/X/ equivalence class of S under CANON} 
 
Example. The uniqueness of E(12) is 3. The uniqueness of E(18) is 4 (by computer 
inspection). 
 
   The uniqueness of a space tells us the least M such that all M-decompositions of set 
classes are unique. 
   It is possible to obtain an even more interesting measure of uniqueness using  
C-decomposition. We shall construct a minimal collection C of set classes according 
to some criteria, such that ZPARTNERS(C,/X/) = 1 for all /X/. The collection C will 



be termed a minimal basis for the GIS according to the given criteria. The criteria 
presented here are not the only criteria that might be chosen. 
 
   The “criteria” spoken of allows a total ordering relation on the set of collections of 
set classes.  
   We now establish one potential total ordering. 

4.5 Definition MAXORD 
Given a collection of set classes C, define 
MAXORD(C) = max { M: there is an M-class in C}  

4.6 Definition MAXORD Ordering 
Given collections of set classes C, D , order according to the following three steps, 
stopping as soon as the order is resolved: 
 
1.wlog If MAXORD(C) <MAXORD(D) C precedes D in the ordering, and we write 
C < D o/w 
2.wlog If card(C) < card(D) C < D o/w 
3. If card(C) = card(D) and MAXORD(C) =MAXORD(D) C=D.  
 
   We could go further; step 3 could begin an analysis of distribution of the M-classes 
in C and D. This analysis is not to be undertaken lightly- for example, in E(12), 
consider collections C= {2-1, 2-2, 3-1, 4-1, 4-2, 5-1} and  
D= {2-2, 3-2, 3-3, 3-4, 4-2, 5-2}. Which is to be preferred as a minimum? The 
question is deferred  for this paper.  
   The reader may wonder why steps 1 and 2 are not the other way around. Would it 
not be better to have as small a cardinality C as possible as the first determining 
factor? The reason that MAXORD is most important, is that a C-decomposition 
cannot be carried out on a set whose cardinality is less than MAXORD(C)i. The 
MAXORD Ordering makes it most important that the collection decomposition be 
applicable to as many sets as possible. 

4.7 Definition Minimal Basis 
Given a total ordering on the set of collections of set classes in a GIS, define a 
minimal basis as a minimal collection with respect to that ordering such that 
ZPARTNERS(C,/X/) = 1 for all /X/ with card(X)>=MAXORD(C) 
 
Example in E(12) According to the MAXORD Ordering, a minimal basis (and the 
unique one) in E(12) is the collection of the 12 trichords. This can be verified by 
hand, attempting to extend the collection of all 2-sets by less than the full complement 
of 3-sets.  
 
5 Similarity Measures For C Decomposition 
 
I adapt freely from both Isaacson (1990) and the Block/Douthett paper on scalar 
products (1994) to define: 

5.1 Definition WCVSIM (Weighted C-Vector SIMilarity) 
Given an ordered collection of set classes C,  given set classes /X/,/Y/ (sets X,Y) 
where card(X),card(Y)>=MAXORD(C) 



WCVSIM(/X/, /Y/)= WCVSIM(X,Y)= σ (W.dCV) 
 
where W= [w1,…,wk].Ik,   [w1,…,wk] a weight vector , Ik the k by k identity matrix 
and dCV is the difference of C-vectors 
 
dCV= C[/X/] –C[/Y/] = C[X] – C[Y] 
 
σ is the standard deviation from statistical mathematics, i.e.: 
 

where the zi are the k components of dCV, and z is their average. 
 
The index k refers to card(C). dCV will have k entries, as does the weighting vector. 

5.2 Definition CVSIM 
If the weighting vector is a string of 1s, so W= [1,…,1].Ik= Ik then WCVSIM becomes 
an unweighted version of WCVSIM, indicated as CVSIM. 

5.3 Definition WMVSIM, MVSIM 
Let C be the collection of all M-sets. In this special case, we write WMVSIM as a 
synonym for WCVSIM and MVSIM as a synonym for CVSIM.  
 
Example 2VSIM is Isaacson’s icSIM. 
 
   As in Isaacson’s conclusions about icVSIM, it is noted that CVSIM is a quantitative 
measure. For qualitative measures adapted to a certain situation, Block and Douthett 
lead the way with their weighting vectors; when the more general WCVSIM is more 
useful.  
   Let C be a collection of set classes such that card(ZPARTNERS(C,/X/)) = 1 for all 
/X/ with card(X)>=MAXORD(C). Then it is possible to construct a similarity 
measure to take advantage of the “uniqueness” of each set class with respect to C-
decomposition. 
We are hoping that the measure will guarantee unique values from any pivot set class 
to any second set class. However, that hope is naïve, for the statistical measures on k 
data sets can still find set classes /X/, /Y/ to be an equal distance from pivot /P/ whilst 
their C-vectors are unique. What we can hope to get from C-vector uniqueness is the 
isolation of any pivot from its surroundings. No /X/ distinct from the pivot can be zero 
distance (with respect to the similarity measure) from the pivot.  
   Actually, we must strengthen the assumptions on the C-vectors to provide such a 
measure. 

5.4 Proposition  
Let C be a collection of set classes such that ZPARTNERS(C,/X/) = 1 for all /X/ with 
card(X)>=MAXORD(C). Further, given any /X/,/Y/, dCV= C[/X/] –C[/Y/] is not a 
scalar multiple of the constant vector [1 … 1] with card(C) entries. 
Then CVSIM has the property that CVSIM(/X/,/Y/)=0 iff /X/=/Y/ as long as card(X), 
card(Y)>=MAXORD(C). 
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Proof  
CVSIM(/X/,/Y/) = σ (dCV)= 0  iff  
zi-z=0 for all entries zi in dCV            iff 
zi=z for all entries zi in dCV       iff 
dCV={z … z} (card(C) entries)     QED 
  
   It is an open question whether the set of hypotheses can be reduced, and in 
particular, whether the first clause of the proposition implies the second in all cases; 
for all Generalised Interval Systems and collections C with the first property.  
 
Example 3VSIM in E(12) meets the hypotheses of the proposition. (the first 
hypothesis has already been dealt with; the second follows by inspection though some 
cases can be discounted by cardinality arguments). Furthermore, the 3-sets have 
already been shown to be the minimal basis of E(12) with respect to some sensible 
criteria. So 3VSIM is a propitious measure on E(12). Its only restriction is it cannot be 
applied to the 2-sets. It might be suggested it has great potential application to the 
theory of genera, which relies so heavily on 3-set embedding.  
 
   To conclude this section, a viable tactic to find a powerful measure on a GIS is to 
find a minimal basis C with respect to careful criteria. If this basis fits the second 
hypothesis of the proposition, the measure CVSIM so generated is guaranteed 
distinguished properties.    
 
6 A note about saturation vectors 
 
The latest fashion in the field of similarity measure on sets is to consider the 
embedding numbers relative to the bounds of the values that might be taken by those 
numbers. For example, we might define 

6.1 Definition sataggC-vector  
Let C be an ordered set of equivalence classes of S, where S is the set of members of 
the GIS. C= {/ci/: i e I} where I is some ordered indexing set. Given set Y, the 
sataggC-vector of Y is defined as 
 
sataggC[Y] = {EMB(/ci/,Y)/EMB(/ci/, /S/): i e I} 
 
where /S/ is the aggregate set class, generated by the set of members of the GIS. We 
assume finiteness. 
 
   Other types of saturation vector can be defined: Buchler (1997) provides one with 
respect to the cardinality of the set Y. This saturation vector can still be examined 
between sets of different cardinality, though its derivation differs in each case. 
 
The main point is that the work of this paper can still be carried out with saturation 
vectors. 
 
 
 
 



Appendix A Proofs 
 
Proposition 3.1 
Suppose two sets X, Y have different M-class decompositions, M>=2. Then they have 
different (M+1)-class decompositions. 
 
The case M=1 is excluded because if card(X)=card(Y), the 1-decompositions of X 
and Y are often the same. A 1-decomposition is usually determined by cardinality 
alone. This is certainly the case for the TnI set classes. 
 
We recall a result of Lewin (1987: 107 5.3.5.2) 
 
Theorem Given positive integers L<M<N. Let X be a set of cardinality L, Z a set of 
cardinality N. Then  

 Where the summation is over all N-classes /Y/. 
 
Proof  
   If X and Y are in the same set class, EMB(Z,X)= EMB(Z,Y) for all lower 
cardinality Z. In particular, X and Y have the same M-decomposition, so this case is 
not consistent with the proposition and can be discarded.  
   If card(X)=card(Y)=(M+1) the proposition is immediate as long as X and Y are not 
in the same set class, the case already disposed. 
   If card(X) is not equal to card(Y) consider the cardinality of the (M+1) 
decompositions. We are assuming X and Y are finite. The M+1 decomposition of X 
has COMB(M+1,X) members, that of Y COMB(M+1,Y). By cardinality alone, the 
decompositions differ. 
   Otherwise, card(X)=card(Y)>(M+1). We are in a position to utilise Lewin’s 
theorem. Compare the M-class vectors of X and Y. There exists some entry that 
differs, say for M-class C. Now M< M+1 < card(X). Suppose the (M+1) 
decompositions of X and Y are the same. Apply Lewin’s theorems to both X and Y, 
summing over the M+1 classes (denoted /D/) : 

 
This follows because the denominator is a constant (card(X)=card(Y)) and throughout  
the sum, EMB(/D/,X)= EMB(/D/,Y) by the assumption that the (M+1) 
decompositions are the same. EMB(C, /D/) does not depend on X and Y. 
 
We have contradicted the assumption that EMB(C,X) differs from EMB(C,Y). Hence, 
the (M+1) decompositions of X and y must differ.   QED 
 
 
 
Proposition 3.7 
Let the GIS be E(p), p>=3, with the TnI set classes. Given X such that 3 <=card(X), 
card(ZPARTNERS(card(X)-1,/X/))=1. 
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For the second result proved in this appendix we require the notion of a successive 
difference set (See Soderberg(1995), under CORD (0.6) or Chrisman (1977)).  
 
Definition Successive difference set, difference set, compact circular ordering 
In E(p),given finite set N-set X= {a1,…,aN}where the ai are in increasing order, 
define an ordered N-tuple 
 
CORD(X)= [[ a2-a1, …, a(N+1)-aN ]] where a(N+1)= a1+p.  
 
Proof   
The (card(X)-1)-decomposition of a set X has card(X) entries, for  
COMB(card(X)-1,card(X)) = card(X). 
 
Case 1 card(X)=3 
The 2 decomposition of a 3-set has 3 members, each an interval. It is always possible 
to express one interval i or p- i as the sum of the other two. Call those other two a and  
b; they are sufficient to characterise the 3-set. Take difference set [[a b (p-(a+b)]]. 
Because the set classes are equivalence classes under transposition and inversion, this 
difference set represents all possibilities.  
 
Case 2 card(X)>=4 
 
Consider two N-sets X,Y such that /Y/ belongs to ZPARTNERS(card(X)-1,/X/). 
Hence X and Y have the same (N-1) decomposition. Write X and Y as difference sets 
 
CORD(X)= [[x1, … ,xN]] CORD(Y)= [[y1, … ,yN]] 
 
   The N members of the (N-1)- decomposition of X can be written as difference sets 
thus: 
 
[[x1+x2,x3,...,xN]], [[x1,x2+x3,...,xN]], ... , [[x1...x N-2,x N-1+xN]], [[xN+x1,x2,...,x N-1]] (*) 
 
   Note that the largest entry appearing in this decomposition must be a sum of two xi 
(if it was a single xi, note that xi+x (i+1 mod p) is a member of some difference set in the  
(N-1)-decomposition- a contradiction, since all differences are positive).  
 
   Y has the same decomposition (*), but  in a similar way, using Y as a difference set, 
we can generate the decomposition for Y explicitly, in terms of the yi . As for the xi, 
the largest entry in the decomposition (*) must be a sum of two yi. Without loss of 
generality (cyclically permute and invert (retrograde order) the difference set, 
renumbering terms) , take it as y1+y2. Now match (any) difference set containing 
y1+y2 in (*) to [y1+y2,y3,...yn]. This will force n-2 elements yi to have the same values 
and order as n-2 xi.  All that is left to do is to determine how to partition y1+y2 to get 
y1 and y2. There are two cases: 
 
1.  All the difference sets in (*) are the same. Then all the xi are equal (only possible 

way to generate an (N-1)-decomposition with only one set involved N times) All 
the yi must also be equal for the same reason. Since at least two yi are known 
(N>=4) the whole set is known. Since these yi were the same as entries xi, Y=X. 



2.  There is a distinct difference set in (*) from [y1+y2,y3,...yn]. If we match this to an 
equivalent in Y’s decomposition, the difference set will involve a different sum yk 
+ y k+1. So one of y1 and y2 must appear ‘raw’ in the difference set. We can use the 
values we have already obtained to spot at least one raw (unsummed) entry yj, and 
line up the difference sets of xi and yi. The xi and yi must appear in their indexed 
order (use inversion if necessary).This pattern match will determine any one of y1, 
y2- the other will follow immediately by the property of a difference set that the 
entries sum to p. Since the second difference set was taken from (*) y1 and y2 
(directly and as dependent variable) have been expressed as the remaining entries 
xi unclaimed before (and in the correct order!) Y=X.     

QED 
 
   The definition of the difference set and the identification of the largest entry in the 
proof require properties specific to E(p). There is no chance of generalising the proof 
to general GIS. The proof will not even work for Tn set classes, since inversion is 
required! 
 
Appendix B  Computer Searching and Prime Forms 
 
To investigate computationally, the author has written custom software. Given 
positive integer p, this software is capable of finding all TnI set classes of E(p), and 
can determine and compare N-vectors of E(p). The question covered here is that of 
choosing an ordering for the set classes generated by the program. Forte may have 
provided a list for E(12), but is there a sensible way to proceed in general? 
 
Let us use a form of binary encoding: given set X={x1,x2,…xN}in E(p), encode this 
set as a positive integer using the function ENCODE defined thus 

  
   ENCODE is 1-1 onto Z2

p (proof omitted but trivial). The inverse function 
ENCODE-1 exists (on Z2

p ) to convert in the opposite direction. 
 
   Now use the natural ordering on the integers to order any two sets via ENCODE. 
 
Given sets X,Y X <ENCODE Y iff ENCODE(X) <ENCODE(Y) 
 
   Furthermore, we can define a prime form as 
 
PRIMEFORM(X)= ENCODE-1 min {ENCODE(X): X belongs to /X/} 
 
   This is subtly different from Forte’s prime form, which uses the mapping FORTE: 
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   FORTE is still 1-1 onto Z2
p (proof omitted, but straightforward).We use it exactly as 

for ENCODE. Yet it is less intuitive computationally. 
 
   To conclude, the listings of N sets for p other than 12 use ENCODE for finding 
prime forms and for then ordering the associated set classes. In this paper, Forte’s 
ordering has been used for E(12) where the reader will be likely to be familiar with 
FORTE. 
 
Appendix C Attempts to prove a conjecture 
 
The author made many and varied attempts to prove the conjecture before finding the 
counterexample. For E(p) the failure of an inductive proof using 3.7 for the inductive 
step may be traced to the following false proposition: 
 
False Proposition Given a valid 3-decomposition for an N-set X, let Y be an M-set 
where 3<=M<N, such that the 3-decomposition of Y is a subset of the  
3-decomposition of X. Then Y is an abstract subset of X. 
 
   A counterexample is given by 6-3 which has 3-vector [221 011 111 000] and 4-15 
which has 3 vector [001 001 110 000]. 4-15 is not an abstract subset of 6-3. 
 
   The following paragraph is an informal summary of some attempts by the author to 
prove the conjecture (couched in terms of E(p)) 
 
   The main observation that inspired the conjecture in the first place was that the 3-
sets can symbolise a “non-trivial permutation” whereas the 2-sets are  
“trivial permutations”. The use of the term permutation refers to the successive 
difference representation of a pc set, formally set out in Appendix A. Solving a 
decomposition backwards requires the “fitting together” of a group of lower 
cardinality pc sets into a larger cardinality one. This can be visualised by considering 
the form of subsets of a pc set with respect to successive difference representation. A 
form of “pattern matching” ensues. The failure of the conjecture to be true indicates 
that there are multiple solutions, multiple “fits” for the set of successive difference 
patterns, even when those patterns are in some sense non-trivial permutations. 
Many efforts were made to try and represent the problem in terms of linear equations, 
to isolate cases in which the theorem fails. The linear equations are between the 
successive difference representations of the pc set representatives of the distinct set 
classes sharing the same N-decomposition. However, solid results have been so far 
elusive. 
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i There is a way around this that may lead to interesting results. If one wants 
EMB(X,Y) and card(X) > card (Y), define EMB(X,Y)= EMB (Y,X). However, the 
trick causes problems for the comparison of C-vectors for X and Y where /X/ is not 
equal to /Y/, and card(X), card(Y) < MAXORD(C). For then, suppose Z is a 
MAXORD(C) set in C. EMB(Z,X)= EMB(X,Z) is not comparable to EMB(Z,Y)= 
EMB(Y,Z).  
 


