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Abstract: - This paper considers the role of Z related sets in modern music theory mathematics, and seeks a 
deeper explanation for their existence. To this end, a generalised interval function is introduced based on a 
metric on the space Zp. A non-modulo interval function is used to give an existence proof across all pitch class 
spaces for the Z sets. The relation of this interval function to the standard interval function allows greater 
understanding of why Z sets can occur. Statistics are examined for the frequency of Z sets in smaller pitch class 
spaces, and a conjecture is made on the necessity of Z sets for interval functions. 
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1 Introduction 
 
Z related chords, that is, pitch class sets sharing a 
common interval class vector, have fascinated 
music theorists and composers since the time of 
Schoenberg, which would be precisely when music 
theory mathematics began its rise in composition 
and analysis. For a resume of their importance, 
with examples from pieces by Webern and Bartok,  
see [2]. In as much as the residue class mathematics 
of pitch can be said to relate to human perception, 
Z related pitch class sets should be heard as having 
the same interval decomposition, the same 
constituent relation between pairs of notes of a 
given chord. Since Z paired chords cannot be 
transformed into one another by the interval 
preserving operations of transposition and 
inversion, they have formed a tantalising enigma to 
composers and analysts. In this paper we explore 
the mathematics of their existence, seeking to 
reduce the enigma surrounding them.  
 

2 Metrics and interval vectors 

2.1 Basic Definitions  
The notation of current music theorists is not 
standardised. A particularly troublesome topic is 
the definition of the mathematical domain of the 
pitch class space of any size1. To resolve 
ambiguities, I provide another definition that is 
clear of mathematics and should make sense to all 
parties.   

2.1.1 (Definition) E(p)  
The equal tempered pitch class space of order p 
with equivalence classes constructed under 
transposition and inversion will be denoted E(p). 
 
In E(12) we will utilise the set class names of 
Forte's standard list2 from [2].  
Throughout the paper, we are only concerned with 
transposition and inversion set classes.  

2.1.2 (Definitions) /A/, A, a, card S, M-class 
set, COMB(M, N) 

Following Lewin [5] we notate a set class by /A/, a 
representative for a set class A and a pitch class by 
lower case a. The cardinality of set S is card S. An 
M-class set is a set class whose representatives are 
of cardinality M. COMB(M, N) is the number of 
ways of choosing M objects from N. 
 
When dealing mathematically with pitch classes in 
E(p) we consider the ring Zp, the integers modulo 
p, with the inner compositions of addition and 
multiplication. 

2.2 New definitions  

2.2.1 (Definition) Interval function 
 A metric INTFUNC: Zp x Zp to Zp is called an 
interval function3. It must satisfy the metric 
requirements ([9]: pp 21): 
(MET1) INTFUNC(a, b) = 0 iff a = b 
(MET2) INTFUNC(a, b) = INTFUNC(b, a)  
∀ a, b in Zp 
(MET3) INTFUNC(a, b) + INTFUNC(b, c)  ≥ 



INTFUNC(a, c) 
 
The two interval functions critical to this paper are: 

2.2.2 SIF (standard interval function) on E(p) 
SIF(a,b)= min(p+a-b, b-a) where p>=b>a>=0 
 
The image set of SIF over E(p) corresponds to the 
dyad set classes of E(p). These values are known as 
the interval classes.  

2.2.3 IFNOMOD (interval function without 
modulo) on E(p) 

IFNOMOD(a,b)= b-a where wlog p>b>=a>=0 
 
There is no modulo p and we are just examining a 
bare interval in the integers. However, the 
definition forces the value of IFNOMOD(a, b) 
within the range 0 to p-1, with IFNOMOD(a, b) = 0 
iff a= b. IFNOMOD is onto Zp. 
 
It is important to note that IFNOMOD has only a 
domain dependence on p. We could define 
IFNOMOD on the integers and consider its 
restriction to any Zp as the specific IFNOMOD for 
E(p). SIF requires the use of p in the definition. 
Later, the consequence will be results available 
across all E(p) using IFNOMOD. 
 
Even though each SIF is critically dependent on p, I 
will often refer to SIF as if there is one SIF across 
all E(p). Whilst such a view is valid for 
IFNOMOD, it is certainly not technically accurate 
for SIF. I hope the reader will forgive this 
inaccuracy, the understanding of which avoids 
many extra words in what follows. 
 
Now we may define an interval vector for a given 
interval function. For the definition we avoid 
Lewin's embedding functions (refer to [5]) and 
explicitly produce the multiset as an ordered set of 
pairs. 

2.2.4 (Definition) Interval Vector for a given 
Interval Function INTFUNC on E(p) 

Let RANGE = { INTFUNC(a, b) ; a, b e Zp }. 
RANGE is a subset of the integers modulo p. 
Arrange RANGE in increasing order (with the 
standard increasing order for the integers restricted 
to Zp ). Let I be an indexing set for the ordered set. 
RANGE(i) is that element of RANGE 
corresponded to by i E I.  
Given pitch class set A, define  
PAIRS(A)= { (a, b) e A x A:  a≤b} 

INVIMAGE(i)(A) = { (a, b) e PAIRS(A) : 
INTFUNC(a, b) = RANGE(i) } 
 
Then the interval vector for INTFUNC on E(p) for 
set class /A/ is the ordered set   
IV( INTFUNC, E(p) ) (/A/) =  
{ {i, ci} : i e I , ci = card( INVIMAGE(i)(A) ),  
A the prime form of /A/ }     
 
In general use, the dependence of the interval 
vector on the interval function (and hence E(p) ) is 
implicit and taken from the context. To avoid 
confusion, we will write IVINTFUNC for a specific 
interval function INTFUNC. By studying the 
definition above we see how we are measuring the 
multiplicities of the mapping INTFUNC. We 
examine how many elements of a set A map to a 
given element of the image RANGE.  The 
definit ion allows pairs (a, a). We could easily 
ignore this part of an interval vector as we now 
show.  

2.2.5 Proposition  
Given INTFUNC, and set classes /A/ != /B/, if card 
A ≠ card B, IV(A) ≠ IV (B) 
Proof By cardinality considerations. Let  

∑
∈

=
Ii

ic ) IV(/A/) SUM(  

Where the ci and I are as above.  
The SUM( IV(/A/)) construct is sufficient to 
differentiate interval vectors. If we do not allow 
reflexive pairs (a,a):  
SUM( IV(/A/)) = COMB(2, card A) ≠  
COMB(2, card B)= SUM (IV(/B/)) 
If we do 
SUM( IV(/A/)) = (card A * card A)/2 ≠  
(card B * card B)/2 = SUM (IV(/B/)) 

2.2.6 (Definition) ZINTFUNC relation 
For an interval function INTFUNC,  /A/ ZINTFUNC 
/B/ iff  /A/ ≠ /B/ and IVINTFUNC(/A/) = 
IVINTFUNC(/B/).  /A/ and /B/ are termed ZINTFUNC 
pairs or ZINTFUNC partners, and individually may be 
called ZINTFUNC chords. 
 
This is a general Z relation for interval vectors. It 
would be an equivalence relation if we dropped the 
condition that /A/ ≠ /B/, but we have no need of Z 
partner equivalence classes in this paper (see [1]). 
The use of the term Z partners is to avoid the 
misconception that set classes are only ever Z 
related in pairs. For instance Soderberg [8] 



demonstrates Z related triples, quadruples etc for 
the standard interval function.  
   In particular, the Z relation we are used to dealing 
with is ZSIF (called Z2 in [1]). In the context of this 
paper, we must be explicit about which interval 
function we are dealing with for a Z relation.  
 
One result comparing ZSIF to ZIFNOMOD is required: 

2.2.7 Proposition  
If /A/ ZIFNOMOD /B/, then /A/ ZSIF /B/ 
Proof Compare the interval functions. 
 
The converse is false. It is not true that 4-Z15 
ZIFNOMOD 4-Z29. It has been shown that the 
ZIFNOMOD relation is a subset of the ZSIF relation on 
E(p)4. 

2.3 Are there Z Partners for 
ZIFNOMOD? 

In terms of our general aims, it would be beneficial 
to find a 'stronger' version of the standard interval 
function, call it IFSTRONG, that does not allow 
ZIFSTRONG pairs, for then we could analyse exactly 
what is causing failure of uniqueness of the ZSIF 
relation. We would require a proof that for all E(p), 
IFSTRONG interval vectors are unique across the 
set classes of a given E(p). Attempts to find a proof 
are demolished by any counterexample. 
 
So we look for ZIFNOMOD partners. Are there any in 
E(12)? A computer search reveals none. Are there 
any at all? Attempting to prove there are not is 
quite productive in an understanding of what is 
going on, and is discussed later. For now, we give 
the answer; we would not be able to prove 
uniqueness of all set classes across all E(p) with 
respect to the IFNOMOD interval vector, for there 
is a ZIFNOMOD pair in E(14): 

2.3.1 Counterexample  
/A/ , prime form A = { 0,1,4,5,6,7,8,9,11 } 
/B/ , prime form B = { 0,1,2,3,4,6,7,8,11 } 
 
IVIFNOMOD(/A/) = [96555433211100] = 
IVIFNOMOD(/B/) 
 
/A/ and /B/ could not exist for p<12. With respect 
to E(12) A and B are both aspects of the same set 
class 9-4. In E(13) they are in separate set classes 
but are not prime forms, so we cannot compare 
interval vectors. For all p>14, the forms of /A/ and 
/B/ as given above are prime forms and are distinct 
set classes. Let us sum up what this means: 

2.3.2 Proposition  
There is a common ZIFNOMOD pair for all E(p) with 
p>=14. 
Proof. /A/ and /B/ above will be shown to be that 
pair. We need two separate but straightforward to 
prove results. First, that /A/ and /B/ are distinct set 
classes for all E(p) p>=14, and their prime forms 
remain as A and B. Simply examine the Boolean 
pattern of the prime forms to see this is true. 
Secondly, that IFNOMOD as an interval function 
does not change value across all E(p) where there 
are common pitch classes. It was already observed 
earlier that IFNOMOD on E(p) as an interval 
function is a restriction of a metric on the integers 
to domain Zp, and has no other dependence on p. 
The result follows. 

2.3.3 Corollary  
There is a common ZSIF pair with respect to the 
standard interval vector for all E(p) with p≥14. 
Proof. The previous proposition gives the pair 
using proposition 2.2.7 that the ZIFNOMOD relation is 
a subset of the ZSIF. 
   
There is no other theorem on existence of ZSIF 
partners over all p to my knowledge. For instance, 
Babbitt's theorem only shows that they can 
potentially exist, and then for even p only.  
If the reader is wondering about the assertion 'for 
all p' the gaps are quickly filled in by 
computational results for p below 14. 
   
Perhaps we proceeded in a roundabout way, but we 
have proved something about the standard Z chords 
using a particularly special type of Z chord. 
 

3 Enumeration and discovery of Z 
chords 

 
We know that Z chords for our standard interval 
vector exist; that is the reason for this study after 
all! Unfortunately, showing the existence of Z pairs 
is often a proof by discovery. There is no 
enumeration theorem5 and no theorem to predict 
the relative distribution of Z sets in the E(p). Table 
1 gives a listing of the frequencies of ZSIF chords 
(set classes which are in the ZSIF relation with some 
other class) found by computer search. 
 
 



Table 1 Frequencies of ZSIF sets in E(p),       
8 ≤  p ≤  22 

p interval 
classes 

#set 
classes 

#Z set 
classes 

proporti
on 

8 4 30 1 3.3% 
9 4 46 0 0% 
10 5 78 6 7.69% 
11 5 126 0 0% 
12 6 224 46 20.5% 
13 6 380 12 3.16% 
14 7 687 144 20.96% 
15 7 1224 160 13.07% 
16 8 2250 728 32.36% 
17 8 4112 368 8.95% 
18 9 7685 2766 35.99% 
19 9 14310 1296 9.06% 
20 10 27012 10403 38.5% 
21 10 50964 9268 18.19% 
22 11 96909 32085 33.11% 
 
The number of set classes includes the set class 
represented by the empty set. Trivially, this set 
class could never be in the Z relation with another 
set class.   

Table 2 Frequencies of ZIFNOMOD sets in 
E(p), 14 ≤  p ≤  22 

p interval 
classes 

#set 
classes 

#Z 
sets 

proportion 

14 14 687 2 0.29% 
15 15 1224 6 0.49% 
16 16 2250 16 0.71% 
17 17 4112 34 0.83% 
18 18 7685 62 0.81% 
19 19 14310 116 0.81% 
20 20 27012 176 0.65% 
21 21 50964 306 0.60% 
22 22 96909 530 0.55% 
 
The ZIFNOMOD sets are so much rarer that they 
could be quite fascinating for composition in the 
larger pitch class spaces. 
 
The proportions for the even p are always higher, 
one would assume as a consequence of Babbitt's 
Hexachord Theorem6. Note that the only Z pair in 
E(8) arises in the case where Babbitt's Hexachord 
Theorem holds. 
 
There is another side to the distribution of the Z 
chords, in terms of the distribution by M-class. 
Computer search allows the comparison for E(22) 
in Table 3. For M not listed, the number of Z 

chords is zero. The important points are that the 
values for SIF exhibit symmetry, whilst those for 
IFNOMOD are asymmetrical. We see the 
consequences of Babbitt's theorem in the large 
number of 11-class ZSIF chords. In contrast, the 
ZIFNOMOD chords are not a t a maximum for  
M = 11. 

Table 3 Distribution by M-class in E(22) 

M-class SIF IFNOMOD 
5 40 0 
6 125 6 
7 695 22 
8 1185 30 
9 2975 162 
10 3220 66 
11 15605 52 
12 3220 134 
13 2975 20 
14 1185 14 
15 695 24 
16 125 0 
17 40 0 
 
How do we find Z pairs? Soderberg [8] provides a 
methodology that often provides Z pairs, but cannot 
exhaustively find them, particularly since it cannot 
work in E(p) for odd p. Until a property list for Z 
chords can be developed independent of the 
interval vector itself, computer searches will be the 
standard tool, and will turn up plenty of Z pairs- 
table 1 shows how easy they are to discover. 
 

4 Interval class decomposition as 
loss of reconstruction information 

 
Let us begin by examining the most famous ZSIF 
related pair, 4Z-15 and 4Z-29,  the Z pair of lowest 
cardinality in E(12).  
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Figure 1 shows Krenek diagrams for the prime 
forms of these set classes. The chords of the circle 
indicate the six possible pairings of a cardinality 
four set (binomial coefficient COMB(2 4)). 
Integers on the lines reveal the value of the interval 
functions SIF and IFNOMOD.  
   There is only one difference between the two 
functions; that for the chord labelled 5 or 7 in  
4-Z29, where the value 5 corresponds to our 
standard interval function. For SIF looks at the 
shortest possible distance around the circumference 
between two points, this being exactly what 
modulo arithmetic sets up for us. IFNOMOD does 
not allow a topological short cut, and all the 
intervals are taken within the span of 0 to 7. This 
difference of approach is sufficient to differentiate 
the interval vectors of our set classes with respect 
to IVIFNOMOD, whilst those for IVSIF are equal.  
 
IVSIF(4-Z15)=IVSIF(4-Z29) = [4111111] 
IVIFNOMOD(4-Z15) =  [411111100000] 
IVIFNOMOD(4-Z29) =  [411110110000] 
 
It is the min function that reduces the quality of 
interval information we have available to the stage 
where we can no longer differentiate 4-Z15 and  
4-Z29. 
   One realises that order relations are critical and 
always lurk in the background. Which pairing does 
each interval come from? We see from the above 
that for 4-Z15 the interval class 5 comes from one 
place, but for 4-Z29 another. In general, the 
information given to us solely by the interval vector 
does not tell us a unique reconstruction order. In 
my early (and futile) attempts to prove the 
uniqueness of IFNOMOD across all p, I discovered 
that I could always reconstruct the first three 
elements of a prime form using IVIFNOMOD, but 
thereafter, was unable to choose the next element. 
There were multiple possible paths to solutions, 
and the counterexample for E(14) demonstrates 
how two equally valid reconstruction solutions 
coexist7. 
   To summarise, why could we not prove a 
theorem about uniqueness of interval vectors with 
respect to the standard interval function? How do 
the counterexamples, which are the ZSIF sets, 
emerge? The answer is in the information 
contained in the interval vector. We must have 
sufficient information to reconstruct a single set 
class, to assert that the interval vectors across all set 
classes are unique. A theorem of interval vector 
uniqueness must demonstrate that only one possible 
set class could give rise to a given interval vector.  

If such a theorem cannot be proven, then the 
interval vector as a representation of a set class has 
less information than the original set class itself.  
 
To provide the denouement, I conjecture on the 
basis of strong evidence: 

4.1.1 Conjecture  
For any set of interval functions (metrics) IF: Zp x 
Zp to Zp defined across all p there is a ZIF chord for 
some E(p). 
or perhaps a better phrasing would be: 

4.1.2 Conjecture (rephrased) 
Given interval function IF: Zp x Zp to Zp, if p≥14, 
there exists at least a single pair of ZIF chords in 
E(p). 
Possible Proof  Show an isometry of map to 
ZIFNOMOD. Consequently, a counterexample will 
occur by E(14). IF must be onto Zp to better 
ZIFNOMOD's performance.  
Consider E(p) for p=14. The beginning of the proof 
is straightforward. Consider the values of IF(0, 1), 
…, IF(0, 13). If IF(0,1) to IF(0,7) are not unique, 
we immediately get distinct set classes Z related 
(i.e. {0,1} ZIF {0,2}). The tricky part is now 
working through all possible metrics, 
demonstrating further ZIF partners for all cases. 
  
If we allowed an interval function to map to the 
positive integers instead of Zp, we may quickly 
construct exactly what we have been denied so far. 
 
Label the first p primes of the integers 
q0=2,q1=3,…, qp 
IFPRIME(a, b)=  qa*qb if a ≠ b, 0 if a=b 
 
Then a given value of IFPRIME encodes the pitch 
classes from a set form that gave rise to it. Whilst 
all sets will have a unique IFPRIME vector, so 
there is no constant vector for a set class, if we only 
allow interval vectors for the prime forms, we will 
have obtained uniqueness.  
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1 There are great differences based on the mathematical 
perspective of the researcher. See [3] for a combinatorics 
viewpoint of Zn and group D12, [5] for Generalised 
Interval Systems with S= { 0, …, n-1 } int(a, b) = b-a 
mod n and CANON the interval preserving operations, 
or [6]  for [r1/n] and TnI set classes. The standard work 
for music analysts is [2]. 
2 An appendix in [1] discusses the set class names for 
general E(p). 
3 There are many other mappings we might consider for 
interval functions, but those that concern us in this paper 
are metrics. The assertion at the end of the paper 
requires the interval function to be a metric. There is 
also one non-standard manipulation; a standard metric as 
described in [9] is a map into the real numbers, not to Zp.  
4 The definition of interval vector has one trick within it. 
It is required that the prime form of a set class be utilised 
in finding the interval vector. This is because, for 
IFNOMOD, the interval vector varies across the 
representatives of the set class! It can be shown that this 
variation is in a sensible way, but we must avoid any 
ambiguity over interval vectors if we are to compare 
them between distinct set classes. 
We could change the definitions to eventually define 
/A/ ZIFNOMOD2 /B/ iff there exists form A of /A/ and form 
B of /B/ such that 
IVIFNOMOD(A)= IVIFNOMOD(B). 

                                                                              
Is is then easy to show 
/A/ ZIFNOMOD2 /B/ implies /A/ ZSIF /B/ 
Yet  /A/ ZSIF /B/ implies /A/ ZIFNOMOD2 /B/ is false. For a 
manual check will show 4-Z15 is not in the ZIFNOMOD2 
relation to 4-Z29. What we are examining here is yet 
another sub-category of the ZSIF relation. Further, since 
ZIFNOMOD2 subsumes ZIFNOMOD, considering relations of 
the space E(p): 
ZIFNOMOD ⊆ ZIFNOMOD2 ⊆ ZSIF 
We use ZIFNOMOD in the text because we must prove that 
two prime forms are distinct for all p≥14. 
5 Given the success of the application of Polya's 
Theorem to musical enumeration ([7], [3], [4]) one 
wonders whether formulae for the number of Z chords in 
a given E(p) could be constructed? There is a 
fundamental difficulty applying Polya's Theorem to 
enumerate Z chords; the Z relation as a property too 
complex to easily identify with a group action. It may be 
that at some future point, headway could be made along 
this path by finding an appropriate representation 
susceptible to the theory. 
6 In general, Babbitt's Theorem is a dead end. It is a 
consequence of complementation, and it does not predict 
that any Z pairs must occur, only that they will occur 
where a set classes complement is not itself. For proofs 
of the theorem see ([5]: pp145, [10]). The Wilcox 
example is particularly illuminating, but only goes to 
show how critical the factor of complementation is in the 
proof. There is no general analogue to Babbitt's 
Hexachord Theorem for the interval vectors other than 
SIF, since the proof of the theorem requires the very fact 
that the range for SIF are the interval classes. 
7 There are a couple of approaches I've found to 
presenting this as an algebra problem. One is to imagine 
two possible Z partners and their difference sets (see 
[1]). The second is to construct a p x p 'delta matrix' 
using  characteristic functions over the elements of Zp. 
Neither approach leads to any general way of reducing 
to a convenient system of  linear equations, so these 
ideas are not presented in the main text.  


